Next Article in Journal
Superior Mechanical Properties of Double-Network Hydrogels Reinforced by Carbon Nanotubes without Organic Modification
Next Article in Special Issue
New Mononuclear Cu(II) Complexes and 1D Chains with 4-Amino-4H-1,2,4-triazole
Previous Article in Journal
Comparative Analysis of Flower Volatiles from Nine Citrus at Three Blooming Stages
Previous Article in Special Issue
Solid Lipid Nanoparticle-Based Calix[n]arenes and Calix-Resorcinarenes as Building Blocks: Synthesis, Formulation and Characterization
Article Menu

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2013, 14(11), 22368-22379; doi:10.3390/ijms141122368

Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors

1
Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
2
Jiangsu-Singapore Joint Research Center for Organic/Bio-Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816, China
These authors contributed equally to this work.
*
Authors to whom correspondence should be addressed.
Received: 29 August 2013 / Revised: 21 October 2013 / Accepted: 29 October 2013 / Published: 13 November 2013
(This article belongs to the Special Issue Synthesis, Characterization and Application of Supramolecular Systems)
View Full-Text   |   Download PDF [646 KB, uploaded 19 June 2014]   |  

Abstract

Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics. View Full-Text
Keywords: luminescence; supramolecular polymers; polyfluorenes; hydrogen bonds; thin films luminescence; supramolecular polymers; polyfluorenes; hydrogen bonds; thin films
Figures

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Zhang, G.-W.; Wang, L.; Xie, L.-H.; Lin, J.-Y.; Huang, W. Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors. Int. J. Mol. Sci. 2013, 14, 22368-22379.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top