Next Article in Journal
Synthesis and Electrochemical Proprieties of Novel Unsymmetrical Bis-Tetrathiafulvalenes and Electrical Conductivity of Their Charge Transfer Complexes with Tetracyanoquinodimethane (TCNQ)
Next Article in Special Issue
Micelle and Bilayer Formation of Amphiphilic Janus Particles in a Slit-Pore
Previous Article in Journal
Mitogen-Activated Protein (MAP) Kinases in Plant Metal Stress: Regulation and Responses in Comparison to Other Biotic and Abiotic Stresses
Previous Article in Special Issue
Vibrational Stark Effect of the Electric-Field Reporter 4-Mercaptobenzonitrile as a Tool for Investigating Electrostatics at Electrode/SAM/Solution Interfaces
Int. J. Mol. Sci. 2012, 13(6), 7854-7871; doi:10.3390/ijms13067854
Article

Diffusivity Maximum in a Reentrant Nematic Phase

1
,
1,*  and 1,2
1 Stranski-Lab for Physical and Theoretical Chemistry, Berlin Institute of Technology, 135 June 17th Street, Berlin 10623, Germany 2 Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
* Author to whom correspondence should be addressed.
Received: 28 April 2012 / Revised: 11 June 2012 / Accepted: 13 June 2012 / Published: 21 June 2012
(This article belongs to the Special Issue Self-Assembled Soft Matter Nanostructures at Interfaces)
View Full-Text   |   Download PDF [734 KB, uploaded 19 June 2014]   |   Browse Figures

Abstract

We report molecular dynamics simulations of confined liquid crystals using the Gay–Berne–Kihara model. Upon isobaric cooling, the standard sequence of isotropic–nematic–smectic A phase transitions is found. Upon further cooling a reentrant nematic phase occurs. We investigate the temperature dependence of the self-diffusion coefficient of the fluid in the nematic, smectic and reentrant nematic phases. We find a maximum in diffusivity upon isobaric cooling. Diffusion increases dramatically in the reentrant phase due to the high orientational molecular order. As the temperature is lowered, the diffusion coefficient follows an Arrhenius behavior. The activation energy of the reentrant phase is found in reasonable agreement with the reported experimental data. We discuss how repulsive interactions may be the underlying mechanism that could explain the occurrence of reentrant nematic behavior for polar and non-polar molecules.
Keywords: reentrant phase; nematic; dynamics; diffusion reentrant phase; nematic; dynamics; diffusion
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote
MDPI and ACS Style

Stieger, T.; Mazza, M.G.; Schoen, M. Diffusivity Maximum in a Reentrant Nematic Phase. Int. J. Mol. Sci. 2012, 13, 7854-7871.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here

Comments

Cited By

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert