Next Article in Journal
Reduced Photoinhibition under Low Irradiance Enhanced Kacip Fatimah (Labisia pumila Benth) Secondary Metabolites, Phenyl Alanine Lyase and Antioxidant Activity
Previous Article in Journal
Phage Displayed Peptides/Antibodies Recognizing Growth Factors and Their Tyrosine Kinase Receptors as Tools for Anti-Cancer Therapeutics
Article Menu

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2012, 13(4), 5278-5289; doi:10.3390/ijms13045278

Synthesis Mechanism of Low-Voltage Praseodymium Oxide Doped Zinc Oxide Varistor Ceramics Prepared Through Modified Citrate Gel Coating

1
Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2
Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*
Author to whom correspondence should be addressed.
Received: 20 February 2012 / Revised: 31 March 2012 / Accepted: 12 April 2012 / Published: 24 April 2012
(This article belongs to the Section Material Sciences and Nanotechnology)
View Full-Text   |   Download PDF [1058 KB, uploaded 19 June 2014]   |  

Abstract

High demands on low-voltage electronics have increased the need for zinc oxide (ZnO) varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr6O11) based ZnO varistor ceramics having breakdown voltages of 2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and FESEM analyses. The electrical properties as a function of Pr6O11 addition were analyzed on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr6O11 from 0.2 to 0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α lowering with increasing Pr6O11 content were associated to reduction in the barrier height caused by variation in O vacancies at grain boundary.
Keywords: citrate gel; praseodymium oxide; varistors; zinc oxide citrate gel; praseodymium oxide; varistors; zinc oxide
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Wan Abdullah, W.R.; Zakaria, A.; Ghazali, M.S.M. Synthesis Mechanism of Low-Voltage Praseodymium Oxide Doped Zinc Oxide Varistor Ceramics Prepared Through Modified Citrate Gel Coating. Int. J. Mol. Sci. 2012, 13, 5278-5289.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top