Int. J. Mol. Sci. 2011, 12(8), 5406-5421; doi:10.3390/ijms12085406

Self-Assembly in the Ferritin Nano-Cage Protein Superfamily

Division of Chemistry and Biology Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
* Author to whom correspondence should be addressed.
Received: 20 July 2011; in revised form: 9 August 2011 / Accepted: 15 August 2011 / Published: 22 August 2011
(This article belongs to the Special Issue Molecular Self-Assembly 2011)
PDF Full-text Download PDF Full-Text [801 KB, Updated Version, uploaded 23 August 2011 08:49 CEST]
The original version is still available [825 KB, uploaded 22 August 2011 16:36 CEST]
Abstract: Protein self-assembly, through specific, high affinity, and geometrically constraining protein-protein interactions, can control and lead to complex cellular nano-structures. Establishing an understanding of the underlying principles that govern protein self-assembly is not only essential to appreciate the fundamental biological functions of these structures, but could also provide a basis for their enhancement for nano-material applications. The ferritins are a superfamily of well studied proteins that self-assemble into hollow cage-like structures which are ubiquitously found in both prokaryotes and eukaryotes. Structural studies have revealed that many members of the ferritin family can self-assemble into nano-cages of two types. Maxi-ferritins form hollow spheres with octahedral symmetry composed of twenty-four monomers. Mini-ferritins, on the other hand, are tetrahedrally symmetric, hollow assemblies composed of twelve monomers. This review will focus on the structure of members of the ferritin superfamily, the mechanism of ferritin self-assembly and the structure-function relations of these proteins.
Keywords: ferritin; maxi-ferritin; mini-ferritin; self-assembly

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Zhang, Y.; Orner, B.P. Self-Assembly in the Ferritin Nano-Cage Protein Superfamily. Int. J. Mol. Sci. 2011, 12, 5406-5421.

AMA Style

Zhang Y, Orner BP. Self-Assembly in the Ferritin Nano-Cage Protein Superfamily. International Journal of Molecular Sciences. 2011; 12(8):5406-5421.

Chicago/Turabian Style

Zhang, Yu; Orner, Brendan P. 2011. "Self-Assembly in the Ferritin Nano-Cage Protein Superfamily." Int. J. Mol. Sci. 12, no. 8: 5406-5421.

Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert