Int. J. Mol. Sci. 2011, 12(12), 9296-9331; doi:10.3390/ijms12129296
Editorial

Molecular System Bioenergics of the Heart: Experimental Studies of Metabolic Compartmentation and Energy Fluxes versus Computer Modeling

1email, 2email, 3email, 3email, 4email and 2,3,* email
Received: 10 November 2011; in revised form: 30 November 2011 / Accepted: 30 November 2011 / Published: 13 December 2011
(This article belongs to the Special Issue Molecular System Bioenergetics 2011)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: In this review we analyze the recent important and remarkable advancements in studies of compartmentation of adenine nucleotides in muscle cells due to their binding to macromolecular complexes and cellular structures, which results in non-equilibrium steady state of the creatine kinase reaction. We discuss the problems of measuring the energy fluxes between different cellular compartments and their simulation by using different computer models. Energy flux determinations by 18O transfer method have shown that in heart about 80% of energy is carried out of mitochondrial intermembrane space into cytoplasm by phosphocreatine fluxes generated by mitochondrial creatine kinase from adenosine triphosphate (ATP), produced by ATP Synthasome. We have applied the mathematical model of compartmentalized energy transfer for analysis of experimental data on the dependence of oxygen consumption rate on heart workload in isolated working heart reported by Williamson et al. The analysis of these data show that even at the maximal workloads and respiration rates, equal to 174 µmol O2 per min per g dry weight, phosphocreatine flux, and not ATP, carries about 80–85% percent of energy needed out of mitochondria into the cytosol. We analyze also the reasons of failures of several computer models published in the literature to correctly describe the experimental data.
Keywords: heart; respiration; energy transfer; phosphocreatine; mathematical modeling
PDF Full-text Download PDF Full-Text [801 KB, Updated Version, uploaded 19 June 2014 04:08 CEST]
The original version is still available [1740 KB, uploaded 19 June 2014 04:08 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Aliev, M.; Guzun, R.; Karu-Varikmaa, M.; Kaambre, T.; Wallimann, T.; Saks, V. Molecular System Bioenergics of the Heart: Experimental Studies of Metabolic Compartmentation and Energy Fluxes versus Computer Modeling. Int. J. Mol. Sci. 2011, 12, 9296-9331.

AMA Style

Aliev M, Guzun R, Karu-Varikmaa M, Kaambre T, Wallimann T, Saks V. Molecular System Bioenergics of the Heart: Experimental Studies of Metabolic Compartmentation and Energy Fluxes versus Computer Modeling. International Journal of Molecular Sciences. 2011; 12(12):9296-9331.

Chicago/Turabian Style

Aliev, Mayis; Guzun, Rita; Karu-Varikmaa, Minna; Kaambre, Tuuli; Wallimann, Theo; Saks, Valdur. 2011. "Molecular System Bioenergics of the Heart: Experimental Studies of Metabolic Compartmentation and Energy Fluxes versus Computer Modeling." Int. J. Mol. Sci. 12, no. 12: 9296-9331.


Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert