Next Article in Journal
Previous Article in Journal
Int. J. Mol. Sci. 2011, 12(11), 8119-8132; doi:10.3390/ijms12118119
Article

Different Reactive Oxygen Species Lead to Distinct Changes of Cellular Metal Ions in the Eukaryotic Model Organism Saccharomyces cerevisiae

1,* , 1
, 1
, 1
, 2
, 2,3
, 1
 and 4,*
Received: 10 October 2011; in revised form: 4 November 2011 / Accepted: 15 November 2011 / Published: 18 November 2011
(This article belongs to the Section Biochemistry, Molecular Biology and Biophysics)
View Full-Text   |   Download PDF [423 KB, uploaded 19 June 2014]   |   Browse Figures
Abstract: Elemental uptake and export of the cell are tightly regulated thereby maintaining the ionomic homeostasis. This equilibrium can be disrupted upon exposure to exogenous reactive oxygen species (ROS), leading to reduction or elevation of the intracellular metal ions. In this study, the ionomic composition in the eukaryotic model organism Saccharomyces cerevisiae was profiled using the inductively-coupled plasma optical emission spectrometer (ICP-OES) following the treatment with individual ROS, including hydrogen peroxide, cumen hydroperoxide, linoleic acid hydroperoxide (LAH), the superoxide-generating agent menadione, the thiol-oxidising agent diamide [diazine-dicarboxylic acid-bis(dimethylamide)], dimedone and peroxynitrite. The findings demonstrated that different ROS resulted in distinct changes in cellular metal ions. Aluminium (Al3+) level rose up to 50-fold after the diamide treatment. Cellular potassium (K+) in LAH-treated cells was 26-fold less compared to the non-treated controls. The diamide-induced Al3+ accumulation was further validated by the enhanced Al3+ uptake along the time course and diamide doses. Pre-incubation of yeast with individual elements including iron, copper, manganese and magnesium failed to block diamide-induced Al3+ uptake, suggesting Al3+-specific transporters could be involved in Al3+ uptake. Furthermore, LAH-induced potassium depletion was validated by a rescue experiment in which addition of potassium increased yeast growth in LAH-containing media by 26% compared to LAH alone. Taken together, the data, for the first time, demonstrated the linkage between ionomic profiles and individual oxidative conditions.
Keywords: reactive oxygen species; metal ions; ionomic profiling; yeast; Saccharomyces cerevisiae reactive oxygen species; metal ions; ionomic profiling; yeast; Saccharomyces cerevisiae
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Wu, M.J.; O’Doherty, P.J.; Murphy, P.A.; Lyons, V.; Christophersen, M.; Rogers, P.J.; Bailey, T.D.; Higgins, V.J. Different Reactive Oxygen Species Lead to Distinct Changes of Cellular Metal Ions in the Eukaryotic Model Organism Saccharomyces cerevisiae. Int. J. Mol. Sci. 2011, 12, 8119-8132.

AMA Style

Wu MJ, O’Doherty PJ, Murphy PA, Lyons V, Christophersen M, Rogers PJ, Bailey TD, Higgins VJ. Different Reactive Oxygen Species Lead to Distinct Changes of Cellular Metal Ions in the Eukaryotic Model Organism Saccharomyces cerevisiae. International Journal of Molecular Sciences. 2011; 12(11):8119-8132.

Chicago/Turabian Style

Wu, Ming J.; O’Doherty, Patrick J.; Murphy, Patricia A.; Lyons, Victoria; Christophersen, Melinda; Rogers, Peter J.; Bailey, Trevor D.; Higgins, Vincent J. 2011. "Different Reactive Oxygen Species Lead to Distinct Changes of Cellular Metal Ions in the Eukaryotic Model Organism Saccharomyces cerevisiae." Int. J. Mol. Sci. 12, no. 11: 8119-8132.



Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert