Headspace Solid-Phase Micro-Extraction Versus Hydrodistillation of Volatile Compounds from Leaves of Cultivated Mentha Taxa: Markers of Safe Chemotypes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Content
2.2. GC-MS Analysis of the Volatile Compounds Obtained Using HD and HS-SPME
2.3. Principal Component Analysis
3. Materials and Methods
3.1. Plant Material
3.2. Essential Oil Hydrodistillation (HD)
3.3. Headspace Solid-Phase Microextraction (HS-SPME)
3.4. GC-MS Analysis
3.5. Statistics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Mahdavi, A.; Moradi, P.; Mastinu, A. Variation in terpene profiles of Thymus vulgaris in water deficit stress response. Molecules 2020, 25, 1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Kabira, A.; Cacciagranob, F.; Tartaglia, A.; Lipsib, M.; Ulusoy, H.I.; Locatelli, L. Analysis of monoterpenes and monoterpenoids. In Recent Advances in Natural Products Analysis; Silva, A.S., Nabavi, S.F., Saeedi, M., Nabavi, S.M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 274–286. [Google Scholar] [CrossRef]
- Zielińska-Błajet, M.; Feder-Kubis, J. Monoterpenes and their derivatives—Recent development in biological and medical applications. Int. J. Mol. Sci. 2020, 21, 7078. [Google Scholar] [CrossRef] [PubMed]
- Zárybnický, T.; Boušová, I.; Ambrož, M.; Skálová, L. Hepatotoxicity of monoterpenes and sesquiterpenes. Arch. Toxicol. 2018, 91, 1–13. [Google Scholar] [CrossRef]
- Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Fokou, P.V.T.; et al. The wonderful activities of the genus Mentha: Not only antioxidant properties. Molecules 2021, 26, 1118. [Google Scholar] [CrossRef]
- Agus, H.H. Terpene toxicity and oxidative stress. In Toxicology Oxidative Stress and Dietary Antioxidants; Patel, V.B., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 33–42. [Google Scholar] [CrossRef]
- Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharopov, F.; Antolak, H.; Kręgiel, D.; Sen, S.; Sharifi-Rad, M.; Acharya, K.; Sharifi-Rad, R.; et al. Plants of genus Mentha: From farm to food factory. Plants 2018, 7, 70. [Google Scholar] [CrossRef] [Green Version]
- Fecka, I.; Turek, S. Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: Peppermint, melissa, and sage. J. Agric. Food Chem. 2007, 55, 10908–10917. [Google Scholar] [CrossRef]
- Rasul, M.G. Conventional extraction methods use in medicinal plants, their advantages and disadvantages. Int. J. Basic Sci. Appl. Comput. 2018, 2, 10–14. [Google Scholar]
- Huang, B.; Lei, Y.; Tang, Y.; Zhang, J.; Qin, L.; Liu, J. Comparison of HS-SPME with hydrodistillation and SFE for the analysis of the volatile compounds of Zisu and Baisu, two varietal species of Perilla frutescens of Chinese origin. Food Chem. 2011, 125, 268–275. [Google Scholar] [CrossRef]
- Malekmohammad, K.; Rafieian-Kopaei, M.; Sardari, S.; Sewell, R.D.E. Toxicological effects of Mentha x piperita (peppermint): A review. Toxin. Rev. 2021, 40, 445–459. [Google Scholar] [CrossRef]
- Kumar, A.; Baitha, U.; Aggarwal, P.; Jamshed, N. A fatal case of menthol poisoning. Int. J. Appl. Basic Med. Res. 2016, 6, 137–139. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.S.; Adhikari, P.B.; Jo, H.J.; Han, J.Y.; Choi, Y.E. Enhanced monoterpene emission in transgenic orange mint (Mentha × piperita f. citrata) overexpressing a tobacco lipid transfer protein (NtLTP1). Planta 2020, 252, 44. [Google Scholar] [CrossRef]
- Pina, L.T.S.; Serafini, M.R.; Oliveira, M.A.; Sampaio, L.A.; Guimarães, J.O.; Guimarães, A.G. Carvone and its pharmacological activities: A systematic review. Phytochemistry 2022, 196, 113080. [Google Scholar] [CrossRef]
- Jakowienko, P.; Wojcik-Stopczynska, B. Influence of essential oils from different varieties of peppermint (Mentha x piperita L.) on growth of some filamentous fungi. Herba Pol. 2010, 56, 60–70. [Google Scholar]
- Mogosan, C.; Vostinaru, O.; Oprean, R.; Heghes, C.; Filip, L.; Balica, G.; Moldovan, R.I.; Schmidt, T.J. A comparative analysis of the chemical composition, anti-inflammatory, and antinociceptive effects of the essential oils from three species of Mentha cultivated in Romania. Molecules 2017, 22, 263. [Google Scholar] [CrossRef]
- Westerfield, E.J. United States Patent (19). Plant 1995, 9, 197. [Google Scholar]
- Balakrishnan, A. Therapeutic uses of peppermint—A review. J. Pharm. Sci. Res. 2015, 7, 474–476. [Google Scholar]
- European Medicines Agency. Public Statement on the Use of Herbal Medicinal Products Containing Pulegone and Menthofuran. Available online: https://www.ema.europa.eu/en/use-herbal-medicinal-products-containing-pulegone-menthofuran (accessed on 15 May 2022).
- Patonay, K.; Németh-Zámboriné, É. Horsemint as a potential raw material for the food industry: Survey on the chemistry of a less studied mint species. Phytochem. Rev. 2021, 20, 631–652. [Google Scholar] [CrossRef]
- Kippes, N.; Tsai, H.; Lieberman, M.; Culp, D.; McCormack, B.; Wilson, R.G.; Dowd, E.; Comai, L.; Henry, I.M. Diploid mint (M. longifolia) can produce spearmint type oil with a high yield potential. Sci. Rep. 2021, 11, 23521. [Google Scholar] [CrossRef]
- Najafian, S.; Rowshan, V.; Fathi, S. Comparison of chemical constituents of essential oil from aerial constituent of Mentha longifolia and Salvia multicaulis obtained by hydrodistillation and headspace analysis. J. Essent. Oil-Bearing Plants 2020, 23, 719–727. [Google Scholar] [CrossRef]
- Abdel-Hameed, E.S.S.; Salman, M.S.; Fadl, M.A.; Elkhateeb, A.; Hassan, M.M. Chemical composition and biological activity of Mentha longifolia L. essential oil growing in Taif, KSA extracted by hydrodistillation, solvent free microwave and microwave hydrodistillation. J. Essent. Oil-Bearing Plants 2018, 21, 1–14. [Google Scholar] [CrossRef]
- Hassanein, H.D.; El-Gendy, A.E.N.G.; Saleh, I.A.; Hendawy, S.F.; Elmissiry, M.M.; Omer, E.A. Profiling of essential oil chemical composition of some Lamiaceae species extracted using conventional and microwave-assisted hydrodistillation extraction methods via chemometrics tools. Flavour Fragr. J. 2020, 35, 329–340. [Google Scholar] [CrossRef]
- Anwar, F.; Alkharfy, K.M.; Najeeb-ur-Rehman; Adam, E.H.K.; Gilani, A.U.H. Chemo-geographical variations in the composition of volatiles and the biological attributes of Mentha longifolia (L.) essential oils from Saudi Arabia. Int. J. Pharmacol. 2017, 13, 408–424. [Google Scholar] [CrossRef] [Green Version]
- Sayed, S.; Soliman, M.; Al-Otaibi, S.; Hassan, M.; Elarrnaouty, S.; Abozeid, S.; El-Shehawi, A. Toxicity, deterrent and repellent activities of four essential oils on Aphis punicae (Hemiptera: Aphididae). Plants 2022, 11, 463. [Google Scholar] [CrossRef]
- Cai, Z.M.; Peng, J.Q.; Chen, Y.; Tao, L.; Zhang, Y.Y.; Fu, L.Y.; De Long, Q.; Shen, X.C. 1,8-Cineole: A review of source, biological activities, and application. J. Asian Nat. Prod. Res. 2021, 23, 938–954. [Google Scholar] [CrossRef]
- Gupta, A.; Jeyakumar, E.; Lawrence, R. Journey of limonene as an antimicrobial agent. J. Pure Appl. Microbiol. 2021, 15, 1094–1110. [Google Scholar] [CrossRef]
- Silva, A.S.; Tewari, D.; Sureda, A.; Suntar, I.; Belwal, T.; Battino, M.; Nabavi, S.M.; Nabavi, S.F. The evidence of health benefits and food applications of Thymus vulgaris L. Trends Food Sci. Technol. 2021, 117, 218–227. [Google Scholar] [CrossRef]
- Escobar, A.; Pérez, M.; Romanelli, G.; Blustein, G. Thymol bioactivity: A review focusing on practical applications. Arab. J. Chem. 2020, 13, 9243–9269. [Google Scholar] [CrossRef]
- Singh, N.; Singh, H.P.; Batish, D.R.; Kohli, R.K.; Yadav, S.S. Chemical characterization, phytotoxic, and cytotoxic activities of essential oil of Mentha longifolia. Environ. Sci. Pollut. Res. 2020, 27, 13512–13523. [Google Scholar] [CrossRef]
- Mohammadi, R.; Khoobdel, M.; Talebi, A.A.; Negahban, M.; Norani, M.; Moradi, M.; Dehghan, O. In vivo evaluation of the repellency effects of nanoemulsion of Mentha piperita and Eucalyptus globulus essential oils against mosquitoes. Open Biotechnol. J. 2021, 14, 145–152. [Google Scholar] [CrossRef]
- Kapp, K.; Püssa, T.; Orav, A.; Roasto, M.; Raal, A.; Vuorela, P.; Vuorela, H.; Tammela, P. Chemical composition and antibacterial effect of Mentha spp. grown in Estonia. Nat. Prod. Commun. 2020, 15. [Google Scholar] [CrossRef]
- Cordero, C.; Zebelo, S.A.; Gnavi, G.; Griglione, A.; Bicchi, C.; Maffei, M.E.; Rubiolo, P. HS-SPME-GC×GC-qMS volatile metabolite profiling of Chrysolina herbacea frass and Mentha spp. leaves. Anal. Bioanal. Chem. 2012, 402, 1941–1952. [Google Scholar] [CrossRef]
- Taherpour, A.A.; Khaef, S.; Yari, A.; Nikeafshar, S.; Fathi, M.; Ghambari, S. Chemical composition analysis of the essential oil of Mentha piperita L. from Kermanshah, Iran by hydrodistillation and HS/SPME methods. J. Anal. Sci. Technol. 2017, 8, 11. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019; ISBN 928-718-505-0. [Google Scholar]
- Kassambara, A.; Mundt, F. Package ‘factoextra’: Extract and Visualize the Results of Multivariate Data Analyses. Available online: http://www.sthda.com/english/rpkgs/factoextra; https://cran.r-project.org/package=factoextra (accessed on 3 October 2022).
No. | Compound | RI | Sample Symbol and Content (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
RIL | M1 | M2 | M3 | M4 | M5 | M6 | M7 | |||
1 | α-Thujene | 930 | 933 | 0.03 | - | - | - | - | - | - |
2 | α-Pinene | 940 | 940 | 0.59 | 1.02 | 1.33 | 1.07 | 1.35 | 0.46 | 2.86 |
3 | Camphene | 957 | 955 | - | - | - | - | - | 0.43 | - |
4 | Sabinene | 981 | 980 | 0.56 | 0.79 | 1.01 | 0.86 | 0.99 | - | - |
5 | β-Pinene | 985 | 982 | 0.93 | 1.38 | 6.69 | 1.16 | 1.64 | 0.38 | - |
6 | β-Myrcene | 994 | 993 | 0.36 | 0.86 | 1.33 | 4.14 | 1.55 | - | - |
7 | Octan-3-ol | 998 | 996 | 0.16 | 0.16 | 0.42 | - | - | - | - |
8 | α-Phellandrene | 1011 | 1006 | - | - | 0.71 | - | - | - | - |
9 | α-Terpinene | 1023 | 1024 | 0.06 | - | 0.74 | 0.28 | - | - | - |
10 | p-Cymene | 1030 | 1030 | 0.07 | - | 2.94 | - | 0.51 | - | - |
11 | Limonene | 1035 | 1035 | - | 9.11 | 1.00 | 5.64 | 6.89 | 0.34 | - |
12 | 1,8-Cineole | 1039 | 1038 | 4.36 | 8.28 | 2.66 | 4.08 | 6.54 | - | 5.11 |
13 | (Z)-β-Ocymene | 1043 | 1044 | 0.52 | 1.25 | 7.28 | 0.21 | 1.58 | - | - |
14 | (E)-β-Ocymene | 1054 | 1054 | 0.12 | 0.41 | 1.42 | - | 0.46 | - | - |
15 | γ-Terpinene | 1065 | 1064 | 0.12 | - | 7.59 | 0.51 | - | - | - |
16 | cis-Sabinenehydrate | 1074 | 1074 | 0.96 | 0.35 | 0.11 | 1.76 | - | - | - |
17 | α-Terpinolene | 1092 | 1097 | 0.07 | - | 0.12 | - | - | - | - |
18 | Linalool | 1103 | 1102 | 0.48 | 0.11 | 40.43 | - | 0.56 | - | - |
19 | Pentyl 3-methylbutanoate | 1110 | 1108 | 0.06 | - | - | - | 0.41 | - | - |
20 | Octan-3-yl acetate | 1127 | 1124 | - | - | 0.27 | - | - | - | - |
21 | Isopulegol | 1152 | 1150 | 0.1 | - | - | - | - | - | - |
22 | p-Menthone | 1160 | 1163 | 41.00 | - | - | - | 0.29 | - | - |
23 | Borneol | 1172 | 1172 | - | - | - | - | - | 1.9 | - |
24 | Menthol | 1181 | 1181 | 28.19 | - | - | - | - | - | - |
25 | Terpinen-4-ol | 1182 | 1182 | 0.37 | - | 0.13 | - | - | - | - |
26 | Isomenthol | 1189 | 1187 | 0.27 | - | - | - | - | - | - |
27 | Neoisomenthol | 1193 | 1193 | 0.08 | - | - | - | - | - | - |
28 | α-Terpineol | 1194 | 1194 | 0.18 | 0.46 | 0.93 | 0.25 | - | - | - |
29 | Myrtenal | 1198 | 1196 | 0.13 | - | - | - | - | - | - |
30 | cis-Dihydrocarvone | 1199 | 1195 | - | 0.47 | - | 2.9 | 26.87 | - | - |
31 | (Z)-Hex-3-enyl pentanoate | 1240 | 1236 | - | - | 0.35 | - | - | - | - |
32 | Pulegone | 1244 | 1244 | 0.62 | - | - | - | - | - | - |
33 | Carvone | 1248 | 1249 | - | 62.92 | - | 72.13 | 3.95 | - | - |
34 | cis-Piperitone oxide | 1258 | 1257 | 2.82 | 8.67 | 0.94 | 0.28 | 0.22 | 21.05 | |
35 | (E)-Citral | 1274 | 1271 | - | - | 0.12 | - | - | - | - |
36 | Menthyl acetate | 1278 | 1278 | 7.67 | - | - | - | - | - | - |
37 | Neomenthyl acetate | 1295 | 1296 | - | - | - | - | 0.25 | - | - |
38 | Thymol | 1299 | 1297 | 0.21 | - | 7.04 | - | 0.32 | - | - |
39 | Dihydrocarvyl acetate | 1333 | 1330 | - | - | - | 0.43 | 13.01 | - | - |
40 | Piperitenone | 1345 | 1347 | - | - | - | - | - | 38.93 | - |
41 | Eugenol | 1362 | 1359 | 0.07 | - | - | - | - | - | - |
42 | cis-Carvyl acetate | 1367 | 1365 | - | - | - | - | 0.23 | - | - |
43 | Piperitenone oxide | 1371 | 1371 | - | - | 0.51 | - | - | 32.88 | 84.66 |
44 | β-Bourbonene | 1386 | 1386 | 0.13 | 0.61 | 0.16 | 0.87 | 0.71 | - | - |
45 | β-Elemene | 1393 | 1394 | 0.07 | - | - | 0.52 | 1.58 | - | - |
46 | cis-Jasmone | 1399 | 1396 | 0.06 | - | - | - | 0.2 | 0.72 | - |
47 | α-Gurjunene | 1411 | 1411 | 0.12 | - | - | - | - | - | - |
48 | trans-Caryophyllene | 1422 | 1423 | 0.48 | 0.92 | 6.73 | 0.95 | 8.21 | 1.17 | 2.83 |
49 | α-Humulene | 1456 | 1456 | - | - | 0.28 | - | 0.33 | - | - |
50 | (E)-β-Farnesene | 1460 | 1460 | 0.44 | - | - | - | - | - | - |
51 | Germacrene D | 1483 | 1482 | 2.11 | 0.72 | 4.07 | 0.78 | 7.35 | - | 4.54 |
52 | Bicyclogermacrene | 1497 | 1499 | 0.6 | - | 0.37 | - | - | - | - |
53 | δ-Cadinene | 1526 | 1524 | 0.05 | - | - | - | - | - | - |
54 | Elemol | 1557 | 1558 | - | - | - | - | 5.77 | - | - |
55 | Veridiflorol | 1593 | 1593 | 0.34 | 0.31 | - | - | 2.76 | - | - |
56 | β-Eudesmol | 1654 | 1653 | - | - | - | - | 0.56 | - | - |
57 | α-Eudesmol | 1657 | 1651 | - | - | - | - | 0.93 | - | - |
58 | (E)-Phytol | 2113 | 2111 | 0.09 | - | - | - | - | - | - |
No. | Compound | RI | Sample Symbol and Content (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
RIL | M1 | M2 | M3 | M4 | M5 | M6 | M7 | |||
1 | (E)-Hex-2-enal | <900 | 855 | - | 0.04 | 0.16 | - | - | - | 1.74 |
2 | (Z)-Hex-3-en-1-ol | <900 | 861 | - | - | 0.21 | - | - | - | - |
3 | α-Thujene | 935 | 933 | - | - | 0.33 | 0.08 | - | - | - |
4 | α-Pinene | 940 | 940 | 0.19 | 0.25 | 0.46 | 0.49 | 0.33 | 0.37 | 0.46 |
5 | Camphene | 957 | 955 | - | - | - | - | - | 0.37 | - |
6 | Sabinene | 981 | 980 | 0.23 | 0.23 | 0.44 | 0.55 | 0.30 | 0.21 | 0.44 |
7 | β-Pinene | 985 | 982 | 0.30 | 0.36 | 2.56 | 0.59 | 0.43 | 0.36 | 3.08 |
8 | Octan-3-one | 989 | 985 | - | - | 0.09 | - | - | - | - |
9 | β-Myrcene | 994 | 993 | 0.24 | 0.44 | 1.43 | 3.45 | 1.03 | 0.31 | - |
10 | Octan-3-ol | 998 | 996 | 0.14 | 0.13 | 0.59 | - | - | 0.09 | - |
11 | α-Terpinene | 1023 | 1024 | - | - | 0.55 | 0.07 | - | - | - |
12 | p-Cymene | 1030 | 1030 | 0.07 | - | 3.21 | - | 0.54 | - | - |
13 | Limonene | 1035 | 1035 | 2.81 | 4.74 | 0.85 | 5.72 | 9.34 | 0.99 | - |
14 | 1,8-Cineole | 1039 | 1038 | 1.94 | 2.69 | 1.60 | 2.23 | 3.02 | 0.07 | 2.75 |
15 | (Z)-β-Ocymene | 1043 | 1044 | 0.55 | 0.75 | 6.51 | 0.17 | 1.23 | - | 0.51 |
16 | (E)-β-Ocymene | 1054 | 1054 | 0.13 | 0.31 | 1.62 | 0.06 | 0.39 | - | 0.60 |
17 | γ-Terpinene | 1065 | 1064 | 0.06 | - | 5.42 | 0.10 | - | - | - |
18 | cis-Sabinenehydrate | 1074 | 1074 | 0.79 | 0.11 | 0.12 | 2.20 | - | - | - |
19 | trans-Linalool oxide | 1078 | 1080 | - | - | 0.15 | - | - | - | - |
20 | α-Terpinolene | 1092 | 1097 | 0.05 | - | - | 0.06 | - | 0.04 | - |
21 | trans-Sabinene hydrate | 1102 | 1101 | - | - | - | 0.09 | - | - | - |
22 | Linalool | 1103 | 1102 | 0.23 | - | 45.24 | - | 0.76 | - | 0.38 |
23 | Pentyl 3-methylbutanoate | 1110 | 1108 | 0.07 | - | - | - | 0.38 | - | - |
24 | Octan-3-yl acetate | 1127 | 1124 | 0.08 | - | 0.48 | - | - | - | 0.60 |
25 | Alloocimene | 1135 | 1131 | - | - | 0.12 | - | - | - | - |
26 | p-Mentha-1,5,8-triene | 1136 | 1135 | - | - | 0.17 | - | 0.23 | - | - |
27 | trans-Limonene oxide | 1143 | 1141 | - | - | - | 0.07 | - | - | - |
28 | Isopulegol | 1152 | 1150 | 0.07 | - | 0.18 | - | - | - | - |
29 | Citronellal | 1158 | 1158 | - | - | 5.32 | - | - | - | - |
30 | p-Menthone | 1160 | 1163 | 27.64 | - | - | - | 0.39 | - | - |
31 | Menthofuran | 1170 | 1169 | 7.27 | - | - | - | - | - | - |
32 | Neomenthol | 1171 | 1167 | 3.67 | - | - | - | - | - | - |
33 | Borneol | 1172 | 1172 | - | - | - | - | - | 1.56 | - |
34 | δ-Terpineol | 1173 | 1171 | - | 0.15 | - | 0.15 | - | - | - |
35 | Menthol | 1181 | 1181 | 26.48 | - | - | - | - | - | - |
36 | Terpinen-4-ol | 1182 | 1182 | - | - | 0.05 | - | - | - | |
37 | Isomenthol | 1189 | 1187 | 0.40 | - | - | - | - | - | - |
38 | Neoisomenthol | 1193 | 1193 | 0.12 | - | - | - | - | - | - |
39 | α-Terpineol | 1194 | 1194 | - | 0.37 | 1.06 | - | - | - | - |
40 | Myrtenal | 1198 | 1196 | 0.06 | - | - | - | - | 0.18 | - |
41 | cis-Dihydrocarvone | 1199 | 1195 | - | 0.55 | - | 1.39 | 39.11 | - | - |
42 | trans-Dihydrocarvone | 1207 | 1206 | - | - | - | 0.09 | 2.51 | - | - |
43 | trans-Carveol | 1227 | 1230 | - | - | - | 0.13 | - | - | - |
44 | β-Cytronelol | 1233 | 1232 | - | - | 0.19 | - | - | - | - |
45 | (Z)-Hex-3-enyl pentanoate | 1240 | 1236 | - | - | 0.34 | 0.26 | - | - | 0.46 |
46 | (Z)-Citral | 1243 | 1245 | - | - | 1.06 | - | - | - | - |
47 | Pulegone | 1244 | 1244 | 3.67 | - | - | - | - | - | - |
48 | Carvone | 1248 | 1249 | 0.08 | 74.49 | 0.16 | 71.44 | 11.98 | - | 0.52 |
49 | cis-Piperitone oxide | 1258 | 1257 | 3.51 | 10.17 | 1.21 | 0.40 | 0.48 | 23.21 | - |
50 | (E)-Citral | 1274 | 1271 | - | - | 1.93 | - | - | - | - |
51 | Menthyl acetate | 1278 | 1278 | 0.68 | - | - | - | - | - | - |
52 | Neomenthyl acetate | 1295 | 1296 | 14.13 | - | - | - | - | - | - |
53 | Thymol | 1299 | 1297 | 0.16 | - | 5.48 | - | - | 0.20 | - |
54 | Neoisomenthyl acetate | 1310 | 1311 | 0.15 | - | - | - | - | - | - |
55 | Dihydrocarvyl acetate | 1333 | 1330 | - | - | - | 0.15 | 10.70 | - | - |
56 | trans-Carvyl acetate | 1342 | 1342 | - | - | - | 0.09 | - | - | - |
57 | Piperitenone | 1345 | 1347 | - | - | - | - | - | 34.68 | - |
58 | cis-Carvyl acetate | 1367 | 1365 | - | - | - | 0.15 | 0.19 | - | - |
59 | Piperitenone oxide | 1371 | 1371 | - | - | 1.04 | - | - | 30.96 | 72.69 |
60 | α-Copaene | 1379 | 1378 | 0.13 | - | - | - | - | - | - |
61 | β-Bourbonene | 1386 | 1386 | 0.15 | 0.88 | 0.08 | 1.21 | 0.52 | - | - |
62 | β-Elemene | 1393 | 1394 | 0.11 | - | - | 0.89 | 0.84 | - | 2.22 |
63 | cis-Jasmone | 1399 | 1396 | - | - | - | 0.26 | - | 0.78 | |
64 | Tetradecane | 1400 | 1400 | 0.10 | 0.39 | 0.31 | - | 0.66 | - | 1.63 |
65 | α-Gurjunene | 1411 | 1411 | 0.10 | - | - | - | - | - | - |
66 | trans-Caryophyllene | 1422 | 1423 | 0.39 | 0.90 | 5.15 | 1.73 | 6.00 | 1.49 | 2.63 |
67 | α-Humulene | 1456 | 1456 | - | - | 0.20 | 0.06 | 0.21 | 0.10 | - |
68 | (E)-β-Farnesene | 1460 | 1460 | 0.52 | 0.22 | 0.12 | 0.37 | - | 0.52 | 0.93 |
69 | α-Amorphene | 1479 | 1485 | 0.05 | - | - | 0.06 | 0.32 | 0.41 | - |
70 | Germacrene D | 1483 | 1482 | 1.24 | 0.34 | 1.36 | 1.56 | 3.11 | - | 1.54 |
71 | Bicyclogermacrene | 1497 | 1499 | 0.47 | - | 0.19 | 0.44 | - | - | - |
72 | δ-Cadinene | 1526 | 1524 | 0.12 | - | 0.28 | 0.18 | 0.55 | - | - |
73 | Elemol | 1557 | 1558 | - | - | - | - | 0.51 | - | - |
74 | Veridiflorol | 1593 | 1593 | 0.11 | - | - | - | 0.32 | - | - |
75 | α-Eudesmol | 1657 | 1651 | - | - | - | - | 0.35 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalczyk, A.; Kuś, P.; Marijanović, Z.; Tuberoso, C.I.G.; Fecka, I.; Jerković, I. Headspace Solid-Phase Micro-Extraction Versus Hydrodistillation of Volatile Compounds from Leaves of Cultivated Mentha Taxa: Markers of Safe Chemotypes. Molecules 2022, 27, 6561. https://doi.org/10.3390/molecules27196561
Kowalczyk A, Kuś P, Marijanović Z, Tuberoso CIG, Fecka I, Jerković I. Headspace Solid-Phase Micro-Extraction Versus Hydrodistillation of Volatile Compounds from Leaves of Cultivated Mentha Taxa: Markers of Safe Chemotypes. Molecules. 2022; 27(19):6561. https://doi.org/10.3390/molecules27196561
Chicago/Turabian StyleKowalczyk, Adam, Piotr Kuś, Zvonimir Marijanović, Carlo I. G. Tuberoso, Izabela Fecka, and Igor Jerković. 2022. "Headspace Solid-Phase Micro-Extraction Versus Hydrodistillation of Volatile Compounds from Leaves of Cultivated Mentha Taxa: Markers of Safe Chemotypes" Molecules 27, no. 19: 6561. https://doi.org/10.3390/molecules27196561