Trash to Treasure: Eco-Friendly and Practical Synthesis of Amides by Nitriles Hydrolysis in WEPPA
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. General Procedure for the Preparation of AWEs (Taking WEPPA as an Example)
3.3. General Procedure for the Hydrolysis of Nitriles in WEPPA (Taking 1a as an Example)
3.4. Gram-Scale Experiments (Taking 1o at 100 mmol as an Example)
3.5. Recycling Experiments
3.6. Comparative Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mgaya, J.E.; Shombe, G.B.; Masikane, S.C.; Mlowe, S.; Mubofu, E.B.; Revaprasadu, N. Cashew nut shell: A potential bio-resource for the production of green environmentally friendly chemicals, materials and fuels. Green Chem. 2019, 21, 1186–1201. [Google Scholar] [CrossRef]
- Clarke, C.J.; Tu, W.C.; Levers, O.; Brohl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef] [PubMed]
- Lipshutz, B.H.; Gallou, F.; Handa, S. Evolution of solvents in organic chemistry. ACS Sustain. Chem. Eng. 2016, 4, 5838–5849. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Zhang, Y.; Deng, Y. Nanoconfined ionic liquids. Chem. Rev. 2017, 117, 6755–6833. [Google Scholar] [CrossRef]
- Amarasekara, A.S. Acidic ionic liquids. Chem. Rev. 2016, 116, 6133–6183. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed]
- Peach, J.; Eastoe, J. Supercritical carbon dioxide: A solvent like no other. Beilstein J. Org. Chem. 2014, 10, 1878–1895. [Google Scholar] [CrossRef]
- Ramsey, E.; Sun, Q.; Zhang, Z.; Zhang, C.; Gou, W. Green sustainable processes using supercritical fluid carbon dioxide. J. Environ. Sci. 2009, 21, 720–726. [Google Scholar] [CrossRef]
- Leitner, W. Supercritical carbon dioxide as a green reaction medium for catalysis. Acc. Chem. Res. 2002, 35, 746–756. [Google Scholar] [CrossRef]
- Gu, Y.; Jerome, F. Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev. 2013, 42, 9550–9570. [Google Scholar] [CrossRef]
- Fustero, S.; Simon-Fuentes, A.; Barrio, P.; Haufe, G. Olefin metathesis reactions with fluorinated substrates, catalysts, and solvents. Chem. Rev. 2015, 115, 871–930. [Google Scholar] [CrossRef] [PubMed]
- Kitanosono, T.; Masuda, K.; Xu, P.; Kobayashi, S. Catalytic organic reactions in water toward sustainable society. Chem. Rev. 2018, 118, 679–746. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, M.; Mondal, M.; Bora, U. Agro-waste extract based solvents: Emergence of novel green solvent for the design of sustainable processes in catalysis and organic chemistry. ChemistrySelect 2017, 2, 5180–5188. [Google Scholar] [CrossRef]
- Hooshmand, S.E.; Heidari, B.; Sedghi, R.; Varma, R.S. Recent advances in the Suzuki-Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chem. 2019, 21, 381–405. [Google Scholar] [CrossRef]
- Dewan, A.; Sarmah, M.; Thakur, A.J.; Bharali, P.; Bora, U. Greener biogenic approach for the synthesis of palladium nanoparticles using papaya peel: An eco-friendly catalyst for C–C coupling reaction. ACS Omega 2018, 3, 5327–5335. [Google Scholar] [CrossRef]
- Boruah, P.R.; Ali, A.A.; Saikia, B.; Sarma, D. A novel green protocol for ligand free Suzuki–Miyaura cross-coupling reactions in WEB at room temperature. Green Chem. 2015, 17, 1442–1445. [Google Scholar] [CrossRef]
- Boruah, P.R.; Ali, A.A.; Chetia, M.; Saikia, B.; Sarma, D. Pd(OAc)2 in WERSA: A novel green catalytic system for Suzuki-Miyaura cross-coupling reactions at room temperature. Chem. Commun. 2015, 51, 11489–11492. [Google Scholar] [CrossRef]
- Sarmah, M.; Dewan, A.; Mondal, M.; Thakur, A.J.; Bora, U. Analysis of the water extract of waste papaya bark ash and its implications as an in situ base in the ligand-free recyclable Suzuki–Miyaura coupling reaction. RSC Adv. 2016, 6, 28981–28985. [Google Scholar] [CrossRef]
- Mahanta, A.; Mondal, M.; Thakur, A.J.; Bora, U. An improved Suzuki–Miyaura cross-coupling reaction with the aid of in situ generated PdNPs: Evidence for enhancing effect with biphasic system. Tetrahedron Lett. 2016, 57, 3091–3095. [Google Scholar] [CrossRef]
- Dewan, A.; Sarmah, M.; Bora, U.; Thakur, A.J. A green protocol for ligand, copper and base free Sonogashira cross-coupling reaction. Tetrahedron Lett. 2016, 57, 3760–3763. [Google Scholar] [CrossRef]
- Lakshmidevi, J.; Appa, R.M.; Naidu, B.R.; Prasad, S.S.; Sarma, L.S.; Venkateswarlu, K. WEPA: A bio-derived medium for added base, pi-acid and ligand free Ullmann coupling of aryl halides using Pd(OAc)2. Chem. Commun. 2018, 54, 12333–12336. [Google Scholar] [CrossRef] [PubMed]
- Saikia, B.; Borah, P. A new avenue to the Dakin reaction in H2O2–WERSA. RSC Adv. 2015, 5, 105583–105586. [Google Scholar] [CrossRef]
- Surneni, N.; Barua, N.C.; Saikia, B. Application of natural feedstock extract: The Henry reaction. Tetrahedron Lett. 2016, 57, 2814–2817. [Google Scholar] [CrossRef]
- Konwar, M.; Ali, A.A.; Sarma, D. A green protocol for peptide bond formation in WEB. Tetrahedron Lett. 2016, 57, 2283–2285. [Google Scholar] [CrossRef]
- Saikia, E.; Bora, S.J.; Chetia, B. H2O2 in WERSA: An efficient green protocol for ipso-hydroxylation of aryl/heteroarylboronic acid. RSC Adv. 2015, 5, 102723–102726. [Google Scholar] [CrossRef]
- Basumatary, S.; Nath, B.; Kalita, P. Application of agro-waste derived materials as heterogeneous base catalysts for biodiesel synthesis. Renew. Sustain. Energy 2018, 10, 043105. [Google Scholar] [CrossRef]
- Dander, J.E.; Garg, N.K. Breaking amides using nickel catalysis. ACS Catal. 2017, 7, 1413–1423. [Google Scholar] [CrossRef]
- Deopura, B.L.; Alagirusamy, R.; Joshi, M.; Gupta, B. Polyesters and Polyamides; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Humphrey, J.M.; Chamberlin, A.R. Chemical synthesis of natural product peptides: Coupling methods for the incorporation of noncoded amino acids into peptides. Chem. Rev. 1997, 97, 2243–2266. [Google Scholar] [CrossRef]
- Rong, M.K.; van Duin, K.; van Dijk, T.; de Pater, J.J.; Deelman, B.J.; Nieger, M.; Ehlers, A.W.; Slootweg, J.C.; Lammertsma, K. Iminophosphanes: Synthesis, rhodium complexes, and ruthenium(II)-catalyzed hydration of nitriles. Organometallics 2017, 36, 1079–1090. [Google Scholar] [CrossRef]
- Tomás-Mendivil, E.; Cadierno, V.; Menéndez, M.I.; López, R. Unmasking the action of phosphinous acid ligands in nitrile hydration reactions catalyzed by arene-ruthenium(II) complexes. Chem. Eur. J. 2015, 21, 16874–16886. [Google Scholar] [CrossRef]
- García-Álvarez, R.; Zablocka, M.; Crochet, P.; Duhayon, C.; Majoral, J.-P.; Cadierno, V. Thiazolyl-phosphine hydrochloride salts: Effective auxiliary ligands for ruthenium-catalyzed nitrile hydration reactions and related amide bond forming processes in water. Green Chem. 2013, 15, 2447–2456. [Google Scholar] [CrossRef]
- Lee, W.-C.; Frost, B.J. Aqueous and biphasic nitrile hydration catalyzed by a recyclable Ru(ii) complex under atmospheric conditions. Green Chem. 2012, 14, 62–66. [Google Scholar] [CrossRef]
- Nasir Baig, R.B.; Nadagouda, M.N.; Varma, R.S. Ruthenium on chitosan: A recyclable heterogeneous catalyst for aqueous hydration of nitriles to amides. Green Chem. 2014, 16, 2122–2127. [Google Scholar] [CrossRef]
- Nasir Baig, R.B.; Varma, R.S. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: Aqueous hydration of nitriles to amides. Chem. Commun. 2012, 48, 6220–6222. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Mendivil, E.; García-Álvarez, R.; Vidal, C.; Crochet, P.; Cadierno, V. Exploring rhodium(I) complexes [RhCl(COD)(PR3)] (COD = 1,5-cyclooctadiene) as catalysts for nitrile nydration reactions in water: The aminophosphines make the difference. ACS Catal. 2014, 4, 1901–1910. [Google Scholar] [CrossRef]
- Goto, A.; Endo, K.; Saito, S. Rh(I)-catalyzed hydration of organonitriles under ambient conditions. Angew. Chem. Int. Ed. 2008, 47, 3607–3609. [Google Scholar] [CrossRef]
- Hirano, T.; Uehara, K.; Kamata, K.; Mizuno, N. Palladium(II) containing gamma-Keggin silicodecatungstate that efficiently catalyzes hydration of nitriles. J. Am. Chem. Soc. 2012, 134, 6425–6433. [Google Scholar] [CrossRef]
- Shimizu, K.-I.; Kubo, T.; Satsuma, A.; Kamachi, T.; Yoshizawa, K. Surface oxygen atom as a cooperative ligand in Pd nanoparticle catalysis for selective hydration of nitriles to amides in water: Experimental and theoretical studies. ACS Catal. 2012, 2, 2467–2474. [Google Scholar] [CrossRef]
- Buil, M.A.L.; Cadierno, V.; Esteruelas, M.A.; Gimeno, J.; Herrero, J.; Izquierdo, S.; OñAte, E. Selective hydration of nitriles to amides promoted by an Os−NHC catalyst: Formation and X-ray characterization of κ2-amidate intermediates. Organometallics 2012, 31, 6861–6867. [Google Scholar] [CrossRef]
- Wang, N.; Zou, X.; Ma, J.; Li, F. The direct synthesis of N-alkylated amides via a tandem hydration/N-alkylation reaction from nitriles, aldoximes and alcohols. Chem. Commun. 2014, 50, 8303–8305. [Google Scholar] [CrossRef]
- Gulyás, H.; Rivilla, I.; Curreli, S.; Freixa, Z.; van Leeuwen, P.W.N.M. Highly active, chemo- and enantioselective Pt-SPO catalytic systems for the synthesis of aromatic carboxamides. Catal. Sci. Technol. 2015, 5, 3822–3828. [Google Scholar] [CrossRef]
- Marce, P.; Lynch, J.; Blacker, A.J.; Williams, J.M. A mild hydration of nitriles catalysed by copper(II) acetate. Chem. Commun. 2016, 52, 1436–1438. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Zhou, X. An efficient and practical protocol for catalytic hydrolysis of nitriles by a copper(I) complex in water. Adv. Synth. Catal. 2012, 354, 584–588. [Google Scholar] [CrossRef]
- Kuwabara, J.; Sawada, Y.; Yoshimatsu, M. Nitrile hydration reaction using copper iodide/cesium carbonate/DBU in nitromethane–water. Synlett 2018, 29, 2061–2065. [Google Scholar]
- Sherbow, T.J.; Downs, E.L.; Sayler, R.I.; Razink, J.J.; Juliette, J.J.; Tyler, D.R. Investigation of 1,3,5-triaza-7-phosphaadamantane-stabilized silver nanoparticles as catalysts for the hydration of benzonitriles and acetone cyanohydrin. ACS Catal. 2014, 4, 3096–3104. [Google Scholar] [CrossRef]
- Kim, A.Y.; Bae, H.S.; Park, S.; Park, S.; Park, K.H. Silver nanoparticle catalyzed selective hydration of nitriles to amides in water under neutral conditions. Catal Lett. 2011, 141, 685–690. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, S.; Das, P. Supported gold nanoparticles-catalyzed microwave-assisted hydration of nitriles to amides under base-free Conditions. Adv. Synth. Catal. 2016, 358, 2889–2894. [Google Scholar] [CrossRef]
- Ramón, R.S.; Marion, N.; Nolan, S.P. Gold activation of nitriles: Catalytic hydration to amides. Chem. Eur. J. 2009, 15, 8695–8697. [Google Scholar] [CrossRef] [PubMed]
- Gawande, M.B.; Branco, P.S.; Nogueira, I.D.; Ghumman, C.A.A.; Bundaleski, N.; Santos, A.; Teodoro, O.M.N.D.; Luque, R. Catalytic applications of a versatile magnetically separable Fe–Mo (Nanocat-Fe–Mo) nanocatalyst. Green Chem. 2013, 15, 682–689. [Google Scholar] [CrossRef]
- Byrne, C.; Houlihan, K.M.; Devi, P.; Jensen, P.; Rutledge, P.J. Bio-inspired nitrile hydration by peptidic ligands based on L-cysteine, L-methionine or L-penicillamine and pyridine-2,6-dicarboxylic acid. Molecules 2014, 19, 20751–20767. [Google Scholar] [CrossRef]
- Thenmozhi, S.; Kadirvelu, K. Transfer hydrogenation and hydration of aromatic aldehydes and nitriles using heterogeneous NiO nanofibers as a catalyst. New J. Chem. 2018, 42, 15572–15577. [Google Scholar] [CrossRef]
- Singh, K.; Sarbajna, A.; Dutta, I.; Pandey, P.; Bera, J.K. Hemilability-driven water activation: A Ni(II) catalyst for base-free hydration of nitriles to amides. Chem. Eur. J. 2017, 23, 7761–7771. [Google Scholar] [CrossRef] [PubMed]
- Garduño, J.A.; Arévalo, A.; Flores-Alamo, M.; García, J.J. Mn(I) organometallics containing the iPr2P(CH2)2PiPr2 ligand for the catalytic hydration of aromatic nitriles. Catal. Sci. Technol. 2018, 8, 2606–2616. [Google Scholar] [CrossRef]
- Battilocchio, C.; Hawkins, J.M.; Ley, S.V. Mild and selective heterogeneous catalytic hydration of nitriles to amides by flowing through manganese dioxide. Org. Lett. 2014, 16, 1060–1063. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Wang, C.Z. Efficient hydration of nitriles promoted by gallic acid derived from renewable bioresources. ChemCatChem 2017, 9, 1349–1353. [Google Scholar] [CrossRef]
- Noè, M.; Perosa, A.; Selva, M. A flexible pinner preparation of orthoesters: The model case of trimethylorthobenzoate. Green Chem. 2013, 15, 2252–2260. [Google Scholar] [CrossRef]
- Moorthy, J.N.; Singhal, N. Facile and highly selective conversion of nitriles to amides via indirect acid-catalyzed hydration using TFA or AcOH-H2SO4. J. Org. Chem. 2005, 70, 1926–1929. [Google Scholar] [CrossRef]
- Zhan, W.; Ji, L.; Ge, Z.-M.; Wang, X.; Li, R.-T. A continuous-flow synthesis of primary amides from hydrolysis of nitriles using hydrogen peroxide as oxidant. Tetrahedron 2018, 74, 1527–1532. [Google Scholar] [CrossRef]
- Yao, S.; Zhou, K.; Wang, J.; Cao, H.; Yu, L.; Wu, J.; Qiu, P.; Xu, Q. Synthesis of 2-substituted quinazolines by CsOH-mediated direct aerobic oxidative cyclocondensation of 2-aminoarylmethanols with nitriles in air. Green Chem. 2017, 19, 2945–2951. [Google Scholar] [CrossRef]
- Yang, L.; Chen, H.; Liu, J.; Wan, X.; Xu, Q. Clean synthesis of primary to tertiary carboxamides by CsOH-catalyzed aminolysis of nitriles in water. Green Chem. 2016, 18, 4865–4870. [Google Scholar]
- Ganesh, C.M.; Ajoy, K.; Subhadip, M.; Jyotirmayee, D. Transition-metal-free hydration of nitriles using potassium tert-butoxide under anhydrous conditions. J. Org. Chem. 2015, 80, 4148–4151. [Google Scholar]
- Schmid, T.E.; Gómez-Herrera, A.; Songis, O.; Sneddon, D.; Révolte, A.; Nahra, F.; Cazin, C.S.J. Selective NaOH-catalysed hydration of aromatic nitriles to amides. Catal. Sci. Technol. 2015, 5, 2865–2868. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Dai, W.; Chen, Y.; Xu, Q.; Chen, J.; Yu, L.; Zhao, Y.; Ye, M.; Pan, Y. Efficient and selective nitrile hydration reactions in water catalyzed by an unexpected dimethylsulfinyl anion generated in situ from CsOH and DMSO. Green Chem. 2014, 16, 2136–2141. [Google Scholar] [CrossRef]
- Tu, T.; Wang, Z.; Liu, Z.; Feng, X.; Wang, Q. Efficient and practical transition metal-free catalytic hydration of organonitriles to amides. Green Chem. 2012, 14, 921–924. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Y.; He, J.; Zhang, Y. Transformation of lignin model compounds to N-substituted aromatics via Beckmann rearrangement. Green Chem. 2018, 20, 3318–3326. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, X.; Zhang-Negrerie, D.; Du, Y. Reductive cleavage of the N–O bond: Elemental sulfur-mediated conversion of N-alkoxyamides to amides. Org. Chem. Front. 2019, 6, 347–351. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Jin, W.; Zheng, P.; Wong, W.-T.; Law, G.-L. Efficient selenium-satalyzed selective C(sp3)−H oxidation of benzylpyridines with molecular oxygen. Adv. Synth. Catal. 2017, 359, 1588–1593. [Google Scholar] [CrossRef]
- Sun, Y.; Abdukader, A.; Lu, D.; Zhang, H.; Liu, C. Synthesis of (E)-β-iodo vinylsulfones via iodine-promoted iodosulfonylation of alkynes with sodium sulfinates in an aqueous medium at room temperature. Green Chem. 2017, 19, 1255–1258. [Google Scholar] [CrossRef]
- Cao, D.; Zhang, Y.; Liu, C.; Wang, B.; Sun, Y.; Abdukadera, A.; Hu, H.; Liu, Q. Ionic liquid promoted diazenylation of N-heterocyclic compounds with aryltriazenes under mild conditions. Org. Lett. 2016, 18, 2000–2003. [Google Scholar]
- Li, H.; Liu, C.; Zhang, Y.; Sun, Y.; Wang, B.; Liu, W. Green method for the synthesis of chromeno[2,3-c]pyrazol-4(1H)-ones through ionic liquid promoted directed annulation of 5-(aryloxy)-1H-pyrazole-4-carbaldehydes in aqueous media. Org. Lett. 2015, 17, 932–935. [Google Scholar] [CrossRef]
- Kaleta, Z.; Makowski, B.T.; Soós, T.; Dembinski, R. Thionation using fluorous Lawesson′s reagent. Org. Lett. 2006, 8, 1625–1628. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-P.; Fei, Z.; Liu, M.-C.; Jia, F.-C.; Wu, A.-X. Direct one-pot synthesis of Luotonin F and analogues via rational logical design. Org. Lett. 2013, 15, 378–381. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Entry | Element | wt % |
---|---|---|
1 | K | 21.36 |
2 | Na | 0.12 |
3 | Ca | 7.41 |
4 | Mg | 1.92 |
5 | Cu | 0.0054 |
6 | Fe | 0.018 |
7 | Mn | 0.012 |
Element | Start BE | Peak BE | End BE | Height CPS | FWHM eV | Area (P) CPS.eV | Area (N) | Atomic % |
---|---|---|---|---|---|---|---|---|
O | 537.48 | 531.34 | 524.28 | 461018.18 | 2.4 | 1200937.11 | 6963.79 | 33.76 |
K | 298.68 | 293.22 | 290.76 | 270622.92 | 2.4 | 704963.77 | 2127.97 | 10.32 |
C | 290.69 | 284.78 | 277.28 | 342691.77 | 2.05 | 760946.07 | 10670.16 | 51.73 |
Ca | 360.08 | 347.26 | 343.68 | 60779.2 | 2.4 | 158327.81 | 387.4 | 1.88 |
P | 138.08 | 133.08 | 124.88 | 7161.84 | 2.4 | 18656.35 | 176.39 | 0.86 |
S | 174.68 | 168.95 | 159.88 | 6485.17 | 2.4 | 16893.65 | 117.31 | 0.57 |
Cl | 210.08 | 198.79 | 188.08 | 5350.36 | 2.4 | 13937.51 | 67.6 | 0.33 |
Si | 105.68 | 102.24 | 93.28 | 3240.34 | 2.4 | 8440.99 | 117.89 | 0.57 |
Entry | AWEs | T (°C) | t (h) | Conv. (%) b |
---|---|---|---|---|
1 | WEWSA | 100 | 12 | 7 |
2 | WEHMPA | 100 | 12 | 19 |
3 | WEAA | 100 | 12 | Trace |
4 | WEBSA | 100 | 12 | 13 |
5 | WEPPA | 100 | 12 | 41 |
6 | WEPA | 100 | 12 | 7 |
7 c | WEPPA(C) | 100 | 12 | N.R. |
8 c | WEWSA(C) | 100 | 12 | N.R. |
9 | WEPPA | 100 | 24 | 43 |
10 | WEPPA | 100 | 36 | 50 |
11 | WEPPA | 120 | 24 | 83 |
12 | WEPPA | 130 | 24 | 93 |
13 | WEPPA | 140 | 24 | 97 |
14 | WEPPA | 100 | 0.5 | 49 |
15 | WEPPA | 120 | 0.5 | 56 |
16 | WEPPA | 140 | 0.5 | 88 |
17 d | WEPPA | 150 | 0.5 | >99 (94) |
18 | WEPPA | 150 | 0.25 | 88 |
19 e | ------ | 150 | 0.5 | N.R. |
Entry | Compound | Loading (g/10 mL) | GC yields (%) b |
---|---|---|---|
1 | K2CO3 | 0.2136 | 17 |
2 | Na2CO3 | 1.2 × 10−3 | N.R |
3 | CaCO3 | 0.0741 | N.R |
4 | MgCO3 | 0.0192 | Trace |
5 | CuCO3 | 0.054 × 10−3 | N.R |
6 | MnCO3 | 0.012 | N.R |
7 | CaO | 0.0741 | 40 |
8 | MgO | 0.0192 | N.R |
9 | CuO | 0.054 × 10−3 | N.R |
10 | Fe2O3 | 0.18 × 10−3 | N.R |
11 | MnO2 | 0.012 | N.R |
12 c | mixture | 26 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Jin, W.; Liu, C. Trash to Treasure: Eco-Friendly and Practical Synthesis of Amides by Nitriles Hydrolysis in WEPPA. Molecules 2019, 24, 3838. https://doi.org/10.3390/molecules24213838
Sun Y, Jin W, Liu C. Trash to Treasure: Eco-Friendly and Practical Synthesis of Amides by Nitriles Hydrolysis in WEPPA. Molecules. 2019; 24(21):3838. https://doi.org/10.3390/molecules24213838
Chicago/Turabian StyleSun, Yajun, Weiwei Jin, and Chenjiang Liu. 2019. "Trash to Treasure: Eco-Friendly and Practical Synthesis of Amides by Nitriles Hydrolysis in WEPPA" Molecules 24, no. 21: 3838. https://doi.org/10.3390/molecules24213838