LM-GlycomeAtlas Ver. 1.0: A Novel Visualization Tool for Lectin Microarray-Based Glycomic Profiles of Mouse Tissue Sections
Abstract
1. Introduction
2. Results
2.1. Collection of Tissue Glycomic Profiling Data
2.2. Visualization of Tissue Glycomic Profiles
2.3. Usage Example of the Dataset: Evaluation of Site-Specific Glycosylation
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Tissue Section Preparation
4.3. Hematoxylin Staining
4.4. Tissue Dissection and Protein Extraction
4.5. LMA Analysis
4.6. Implementation of LM-GlycomeAtlas
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moremen, K.W.; Tiemeyer, M.; Nairn, A.V. Vertebrate protein glycosylation: Diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 2012, 13, 448–462. [Google Scholar] [CrossRef] [PubMed]
- Narimatsu, H.; Sawaki, H.; Kuno, A.; Kaji, H.; Ito, H.; Ikehara, Y. A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. FEBS J. 2010, 277, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Drake, P.M.; Cho, W.; Li, B.; Prakobphol, A.; Johansen, E.; Anderson, N.L.; Regnier, F.E.; Gibson, B.W.; Fisher, S.J. Sweetening the pot: Adding glycosylation to the biomarker discovery equation. Clin. Chem. 2010, 56, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Narimatsu, H.; Kaji, H.; Vakhrushev, S.Y.; Clausen, H.; Zhang, H.; Noro, E.; Togayachi, A.; Nagai-Okatani, C.; Kuno, A.; Zou, X.; et al. Current technologies for complex glycoproteomics and their applications to biology/disease-driven glycoproteomics. J. Proteome Res. 2018, 17, 4097–4112. [Google Scholar] [CrossRef] [PubMed]
- Kuno, A.; Uchiyama, N.; Koseki-Kuno, S.; Ebe, Y.; Takashima, S.; Yamada, M.; Hirabayashi, J. Evanescent-field fluorescence-assisted lectin microarray: A new strategy for glycan profiling. Nat. Methods 2005, 2, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Hirabayashi, J.; Yamada, M.; Kuno, A.; Tateno, H. Lectin microarrays: Concept, principle and applications. Chem. Soc. Rev. 2013, 42, 4443–4458. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, A.; Kuno, A.; Ishida, H.; Kawamoto, T.; Shoda, J.-I.; Hirabayashi, J. Development of an all-in-one technology for glycan profiling targeting formalin-embedded tissue sections. Biochem. Biophys. Res. Commun. 2008, 370, 259–263. [Google Scholar] [CrossRef]
- Zou, X.; Yoshida, M.; Nagai-Okatani, C.; Iwaki, J.; Matsuda, A.; Tan, B.; Hagiwara, K.; Sato, T.; Itakura, Y.; Noro, E.; et al. A standardized method for lectin microarray-based tissue glycome mapping. Sci. Rep. 2017, 7, 43560. [Google Scholar] [CrossRef]
- Konishi, Y.; Aoki-Kinoshita, K.F. The GlycomeAtlas tool for visualizing and querying glycome data. Bioinformatics 2012, 28, 2849–2850. [Google Scholar] [CrossRef]
- Aoki-Kinoshita, K.F. Using databases and web resources for glycomics research. Mol. Cell. Proteom. 2013, 12, 1036–1045. [Google Scholar] [CrossRef]
- Campbell, M.P.; Aoki-Kinoshita, K.F.; Lisacek, F.; York, W.S.; Packer, N.H. Glycoinformatics. In Essentials of Glycobiology; Varki, A., Cummings, R., Esko, J., Stanley, P., Hart, G., Aebi, M., Darvill, A., Kinoshita, T., Packer, N., Prestegard, J., et al., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2015. [Google Scholar]
- Kuno, A.; Matsuda, A.; Ikehara, Y.; Narimatsu, H.; Hirabayashi, J. Chapter 7—Differential glycan profiling by lectin microarray targeting tissue specimens. Methods Enzymol. 2010, 478, 165–179. [Google Scholar] [PubMed]
- Nagai-Okatani, C.; Minamino, N. Aberrant glycosylation in the left ventricle and plasma of rats with cardiac hypertrophy and heart failure. PLoS ONE 2016, 11, e0150210. [Google Scholar] [CrossRef] [PubMed]
- Hirao, Y.; Matsuzaki, H.; Iwaki, J.; Kuno, A.; Kaji, H.; Ohkura, T.; Togayachi, A.; Abe, M.; Nomura, M.; Noguchi, M.; et al. Glycoproteomics approach for identifying Glycobiomarker candidate molecules for tissue type classification of non-small cell lung carcinoma. J. Proteome Res. 2014, 13, 4705–4716. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Inomata, M.; Iha, H.; Hiratsuka, T.; Etoh, T.; Shiraishi, N.; Kashima, K.; Kitano, S. Establishment of new predictive markers for distant recurrence of colorectal cancer using lectin microarray analysis. Cancer Med. 2015, 4, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Kuno, A.; Matsuda, A.; Ikehata, Y.; Katada, N.; Hirabayashi, J.; Narimatsu, H.; Watanabe, M. Lectin microarray technology identifies specific lectins related to lymph node metastasis of advanced gastric cancer. Gastric Cancer 2016, 19, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Tozawa-Ono, A.; Kubota, M.; Honma, C.; Nakagawa, Y.; Yokomichi, N.; Yoshioka, N.; Tsuda, C.; Ohara, T.; Koizumi, H.; Suzuki, N. Glycan profiling using formalin-fixed, paraffin-embedded tissues: Hippeastrum hybrid lectin is a sensitive biomarker for squamous cell carcinoma of the uterine cervix. J. Obstet. Gynaecol. Res. 2017, 43, 1326–1334. [Google Scholar] [CrossRef]
- Nagai-Okatani, C.; Nishigori, M.; Sato, T.; Minamino, N.; Kaji, H.; Kuno, A. Wisteria floribunda agglutinin staining for the quantitative assessment of cardiac fibrogenic activity in a mouse model of dilated cardiomyopathy. Lab. Investig. 2019, in press. [Google Scholar] [CrossRef]
- Nagai-Okatani, C.; Nagai, M.; Sato, T.; Kuno, A. An improved method for cell type-selective glycomic analysis of tissue sections assisted by fluorescence laser microdissection. Int. J. Mol. Sci. 2019, 20, 700. [Google Scholar] [CrossRef]
- Gustafsson, O.J.R.; Briggs, M.T.; Condina, M.R.; Winderbaum, L.J.; Pelzing, M.; McColl, S.R.; Everest-Dass, A.V.; Packer, N.H.; Hoffmann, P. MALDI imaging mass spectrometry of N-linked glycans on formalin-fixed paraffin-embedded murine kidney. Anal. Bioanal. Chem. 2015, 407, 2127–2139. [Google Scholar] [CrossRef]
- Everest-Dass, A.V.; Briggs, M.T.; Kaur, G.; Oehler, M.K.; Hoffmann, P.; Packer, N.H. N-glycan MALDI imaging mass spectrometry on formalin-fixed paraffin-embedded tissue enables the delineation of ovarian cancer tissues. Mol. Cell. Proteom. 2016, 15, 3003–3016. [Google Scholar] [CrossRef]
- Yamakawa, N.; Vanbeselaere, J.; Chang, L.-Y.; Yu, S.-Y.; Ducrocq, L.; Harduin-Lepers, A.; Kurata, J.; Aoki-Kinoshita, K.F.; Sato, C.; Khoo, K.-H.; et al. Systems glycomics of adult zebrafish identifies organ-specific sialylation and glycosylation patterns. Nat. Commun. 2018, 9, 4647. [Google Scholar] [CrossRef] [PubMed]
Tissue | Region | Sub-Region | Area (mm2) |
---|---|---|---|
Pancreas | lobule | head | 0.91 |
body | 0.91 | ||
tail | 0.91 | ||
duct | 0.91 | ||
islet of Langerhans | 0.13–0.84 | ||
Gallbladder | 0.91 | ||
Heart 1 | left ventricle | 0.91 | |
interventricular septum | 0.91 | ||
right ventricle | 0.91 | ||
Heart 2 | left atrium | 0.50 | |
right atrium | 0.50 | ||
left ventricle | 0.50 | ||
right ventricle | 0.50 | ||
Lung | alveolus | 0.91 | |
bronchiole | 0.91 | ||
blood vessel | 0.91 | ||
Thymus | cortex | 0.91 | |
medulla | 0.91 | ||
Skin | epidermis | 0.91 | |
dermis | 0.91 | ||
subcutaneous fat | 0.91 | ||
Stomach | forestomach | mucosa | 0.91 |
muscle | 0.91 | ||
glandular stomach | mucosa | 0.91 | |
muscle | 0.91 | ||
Small Intestine | duodenum | villus | 0.91 |
gland | 0.91 | ||
muscle | 0.91 | ||
jejunum | villus | 0.91 | |
gland | 0.91 | ||
muscle | 0.91 | ||
ileum | villus | 0.91 | |
gland | 0.91 | ||
muscle | 0.91 | ||
lymph node | 0.91 | ||
Colon | proximal | mucosa | 0.91 |
muscle | 0.91 | ||
distal | mucosa | 0.91 | |
muscle | 0.91 |
Sheet Name | Contents | Notes |
---|---|---|
Whole Section Info | Animal (species, strain, age, and sex) and Tissue fixation (buffer and condition) | This sheet is the same for all tissues. |
Sample Info | Sample name, Dissected area, Duration, Analyzed sample, LecChip Lot No., Exposure, and Gain | “Duration” means the period from staining until analysis. “Analyzed sample” means the dissected area corresponding to the amount of the sample used for analysis. |
Lectin Array Data | Sample name, Lectin name, and Value | This sheet is the original data used for the graphs shown in the LM-GlycomeAtlas. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagai-Okatani, C.; Aoki-Kinoshita, K.F.; Kakuda, S.; Nagai, M.; Hagiwara, K.; Kiyohara, K.; Fujita, N.; Suzuki, Y.; Sato, T.; Angata, K.; et al. LM-GlycomeAtlas Ver. 1.0: A Novel Visualization Tool for Lectin Microarray-Based Glycomic Profiles of Mouse Tissue Sections. Molecules 2019, 24, 2962. https://doi.org/10.3390/molecules24162962
Nagai-Okatani C, Aoki-Kinoshita KF, Kakuda S, Nagai M, Hagiwara K, Kiyohara K, Fujita N, Suzuki Y, Sato T, Angata K, et al. LM-GlycomeAtlas Ver. 1.0: A Novel Visualization Tool for Lectin Microarray-Based Glycomic Profiles of Mouse Tissue Sections. Molecules. 2019; 24(16):2962. https://doi.org/10.3390/molecules24162962
Chicago/Turabian StyleNagai-Okatani, Chiaki, Kiyoko F Aoki-Kinoshita, Shuichi Kakuda, Misugi Nagai, Kozue Hagiwara, Katsue Kiyohara, Noriaki Fujita, Yoshinori Suzuki, Takashi Sato, Kiyohiko Angata, and et al. 2019. "LM-GlycomeAtlas Ver. 1.0: A Novel Visualization Tool for Lectin Microarray-Based Glycomic Profiles of Mouse Tissue Sections" Molecules 24, no. 16: 2962. https://doi.org/10.3390/molecules24162962
APA StyleNagai-Okatani, C., Aoki-Kinoshita, K. F., Kakuda, S., Nagai, M., Hagiwara, K., Kiyohara, K., Fujita, N., Suzuki, Y., Sato, T., Angata, K., & Kuno, A. (2019). LM-GlycomeAtlas Ver. 1.0: A Novel Visualization Tool for Lectin Microarray-Based Glycomic Profiles of Mouse Tissue Sections. Molecules, 24(16), 2962. https://doi.org/10.3390/molecules24162962