Tetrel Interactions from an Interacting Quantum Atoms Perspective
Abstract
1. Introduction
2. Theoretical Methods
3. Computational Details
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
QTAIM | Quantum theory of atoms in molecules |
IQA | Interacting quantum atoms |
NBO | Natural bond orbital |
MP2 | Second-order Møller–Plesset |
MEP | Molecular electrostatic potential |
EDA | Energy decomposition analysis |
DFT | Density functional theory |
CCSD | Singles and doubles coupled cluster |
HF | Hartree–Fock |
FNO | Frozen natural orbital |
BSSE | Basis set superposition error |
EOM | Equation of motion |
full-CI | Full interaction configuration |
MR-CISD | Multireference singles and doubles interaction configuration |
References
- Atwood, J.L. Encyclopedia of Supramolecular Chemistry; M. Dekker: New York, NY, USA, 2004. [Google Scholar]
- DiStasio, R.A.; Gobre, V.V.; Tkatchenko, A. Many-body van der Waals interactions in molecules and condensed matter. J. Phys. Condens. Matter 2014, 26, 213202. [Google Scholar] [CrossRef] [PubMed]
- Hermann, J.; DiStasio, R.A.; Tkatchenko, A. First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. Chem. Rev. 2017, 117, 4714–4758. [Google Scholar] [CrossRef] [PubMed]
- Rance, G.A.; Marsh, D.H.; Bourne, S.J.; Reade, T.J.; Khlobystov, A.N. van der Waals Interactions between Nanotubes and Nanoparticles for Controlled Assembly of Composite Nanostructures. ACS Nano 2010, 4, 4920–4928. [Google Scholar] [CrossRef] [PubMed]
- Reimers, J.R.; Ford, M.J.; Marcuccio, S.M.; Ulstrup, J.; Hush, N.S. Competition of van der Waals and chemical forces on gold-sulfur surfaces and nanoparticles. Nat. Rev. Chem. 2017, 1. [Google Scholar] [CrossRef]
- Kronik, L.; Tkatchenko, A. Understanding Molecular Crystals with Dispersion-Inclusive Density Functional Theory: Pairwise Corrections and Beyond. Acc. Chem. Res. 2014, 47, 3208–3216. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, L.M.; Weatherby, J.A.; Otero-de-la Roza, A.; Johnson, E.R. Non-Covalent Interactions in Molecular Crystals: Exploring the Accuracy of the Exchange-Hole Dipole Moment Model with Local Orbitals. J. Chem. Theory Comput. 2018, 14, 5715–5724. [Google Scholar] [CrossRef] [PubMed]
- Maurer, R.J.; Ruiz, V.G.; Tkatchenko, A. Many-body dispersion effects in the binding of adsorbates on metal surfaces. J. Chem. Phys. 2015, 143, 102808. [Google Scholar] [CrossRef]
- Ruiz, V.G.; Liu, W.; Tkatchenko, A. Density-functional theory with screened van der Waals interactions applied to atomic and molecular adsorbates on close-packed and non-close-packed surfaces. Phys. Rev. B 2016, 93, 035118. [Google Scholar] [CrossRef]
- Otero-de-la Roza, A.; Cao, B.H.; Price, I.K.; Hein, J.E.; Johnson, E.R. Predicting the Relative Solubilities of Racemic and Enantiopure Crystals by Density-Functional Theory. Angew. Chem. Int. Ed. 2014, 53, 7879–7882. [Google Scholar] [CrossRef]
- Mohebifar, M.; Johnson, E.R.; Rowley, C.N. Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model. J. Chem. Theory Comput. 2017, 13, 6146–6157. [Google Scholar] [CrossRef]
- He, X.; Fusti-Molnar, L.; Cui, G.; Merz, K.M. Importance of dispersion and electron correlation in ab initio protein folding. J. Phys. Chem. B 2009, 113, 5290–5300. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, S.J. What Is the Covalency of Hydrogen Bonding? Chem. Rev. 2011, 111, 2597–2625. [Google Scholar] [CrossRef] [PubMed]
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.; et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [PubMed]
- Neaton, J.B. A direct look at halogen bonds. Science 2017, 358, 167–168. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, R.; Coulon, P.; Lekkerkerker, H.N. Dispersion forces between noble gas atoms. J. Chem. Phys. 1978, 69, 2424–2427. [Google Scholar] [CrossRef]
- Legon, A.C.; Sharapa, D.; Clark, T. Dispersion and polar flattening: noble gas–halogen complexes. J. Mol. Model. 2018, 24. [Google Scholar] [CrossRef] [PubMed]
- Legon, A.C. Tetrel, pnictogen and chalcogen bonds identified in the gas phase before they had names: A systematic look at non-covalent interactions. Phys. Chem. Chem. Phys. 2017, 19, 14884–14896. [Google Scholar] [CrossRef]
- Brammer, L. Halogen bonding, chalcogen bonding, pnictogen bonding, tetrel bonding: Origins, current status and discussion. Faraday Discuss. 2017, 203, 485–507. [Google Scholar] [CrossRef]
- Bürgi, H.B. Chemical reaction coordinates from crystal structure data. I. Inorg. Chem. 1973, 12, 2321–2325. [Google Scholar] [CrossRef]
- Bürgi, H.B.; Dunits, J.D.; Schefter, E. Geometrical Reaction Coordinates. II. Nucleophilic Addition to a Carbonyl Group. J. Am. Chem. Soc. 1973, 95, 5065–5067. [Google Scholar] [CrossRef]
- Bürgi, H.B.; Dunitz, J.D.; Lehn, J.M.; Wipff, G. Stereochemistry of reaction paths at carbonyl centres. Tetrahedron 1974, 30, 1563–1572. [Google Scholar] [CrossRef]
- Maccallum, P.H.; Poet, R.; Milner-White, E.J. Coulombic attractions between partially chargedmain-chain atoms stabilise the right-handed twist found in most β-strands. J. Mol. Biol. 1995, 248, 374–384. [Google Scholar] [CrossRef]
- Bartlett, G.J.; Choudhary, A.; Raines, R.T.; Woolfson, D.N. n→π⋆ interactions in proteins. J. Mol. Biol. 2010, 6, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Harder, M.; Kuhn, B.; Diederich, F. Efficient Stacking on Protein Amide Fragments. ChemMedChem 2013, 8, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.P.; Pavan, M.S.; Row, T.N.G. Experimental evidence for ‘carbon bonding’ in the solid state from charge density analysis. Chem. Commun. 2014, 50, 49–51. [Google Scholar] [CrossRef]
- Southern, S.A.; Bryce, D.L. NMR Investigations of Noncovalent Carbon Tetrel Bonds. Computational Assessment and Initial Experimental Observation. J. Phys. Chem. A 2015, 119, 11891–11899. [Google Scholar] [CrossRef]
- Scilabra, P.; Kumar, V.; Ursini, M.; Resnati, G. Close contacts involving germanium and tin in crystal structures: experimental evidence of tetrel bonds. J. Mol. Model. 2018, 24, 37. [Google Scholar] [CrossRef]
- Mitzel, N.W.; Losehand, U. β-Donor Bonds in Compounds Containing SiON Fragments. Angew. Chem. Int. Ed. 1997, 36, 2807–2809. [Google Scholar] [CrossRef]
- Bauzá, A.; Mooibroek, T.J.; Frontera, A. Tetrel-Bonding Interaction: Rediscovered Supramolecular Force? Angew. Chem. Int. Ed. 2013, 52, 12317–12321. [Google Scholar] [CrossRef]
- Bauzá, A.; Mooibroek, T.J.; Frontera, A. Influence of ring size on the strength of carbon bonding complexes between anions and perfluorocycloalkanes. Phys. Chem. Chem. Phys. 2014, 16, 19192–19197. [Google Scholar] [CrossRef] [PubMed]
- Bauzá, A.; Frontera, A.; Mooibroek, T.J. 1,1,2,2-Tetracyanocyclopropane (TCCP) as supramolecular synthon. Phys. Chem. Chem. Phys. 2016, 18, 1693–1698. [Google Scholar] [CrossRef] [PubMed]
- Bauzá, A.; Mooibroek, T.J.; Frontera, A. The Bright Future of Unconventional σ/π-Hole Interactions. ChemPhysChem 2015, 16, 2496–2517. [Google Scholar] [CrossRef] [PubMed]
- Bauzá, A.; Mooibroek, T.J.; Frontera, A. Tetrel Bonding Interactions. Chem. Rec. 2016, 16, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, S. Comparison of halide receptors based on H, halogen, chalcogen, pnicogen, and tetrel bonds. Faraday Discuss. 2017, 203, 213–226. [Google Scholar] [CrossRef]
- Weinhold, F.; Landis, C.R. Natural bond orbitals and extensions of localized bonding concepts. Chem. Educ. Res. Pract. 2001, 2, 91–104. [Google Scholar] [CrossRef]
- Glendening, E.D.; Landis, C.R.; Weinhold, F. Natural bond orbital methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 1–42. [Google Scholar] [CrossRef]
- Bene, J.D.; Elguero, J.; Alkorta, I. Complexes of CO2 with the Azoles: Tetrel Bonds, Hydrogen Bonds and Other Secondary Interactions. Molecules 2018, 23, 906. [Google Scholar] [CrossRef]
- Bene, J.E.D.; Alkorta, I.; Elguero, J. Carbenes as Electron-Pair Donors To CO2 for C…C Tetrel Bonds and C–C Covalent Bonds. J. Phys. Chem. A 2017, 121, 4039–4047. [Google Scholar] [CrossRef]
- Mani, D.; Arunan, E. The X-C⋯Y (X = O/F, Y = O/S/F/Cl/Br/N/P) carbon bond and hydrophobic interactions. Phys. Chem. Chem. Phys. 2013, 15, 14377–14383. [Google Scholar] [CrossRef]
- Mani, D.; Arunan, E. The X-C⋯π (X = F, Cl, Br, CN) Carbon Bond. J. Phys. Chem. A 2014, 118, 10081–10089. [Google Scholar] [CrossRef] [PubMed]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Grabowski, S.J. Tetrel bond—σ-hole bond as a preliminary stage of the SN2 reaction. Phys. Chem. Chem. Phys. 2014, 16, 1824–1834. [Google Scholar] [CrossRef] [PubMed]
- Sethio, D.; Oliveira, V.; Kraka, E. Quantitative Assessment of Tetrel Bonding Utilizing Vibrational Spectroscopy. Molecules 2018, 23, 2763. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Cheng, J.; Yang, X.; Liu, Z.; Bo, X.; Li, Q. Interplay between the σ-tetrel bond and σ-halogen bond in PhSiF3⋯4-iodopyridine⋯N-base. RSC Adv. 2017, 7, 21713–21720. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Kiani, H.; Mohammadian-Sabet, F. Tuning of carbon bonds by substituent effects: An ab initio study. Mol. Phys. 2016, 114, 3658–3668. [Google Scholar] [CrossRef]
- Esrafili, M.; Mousavian, P. Strong Tetrel Bonds: Theoretical Aspects and Experimental Evidence. Molecules 2018, 23, 2642. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, Q.; Li, W.; Cheng, J. Tetrel bonds between PySiX3 and some nitrogenated bases: Hybridization, substitution, and cooperativity. J. Mol. Graph. Model. 2016, 65, 35–42. [Google Scholar] [CrossRef]
- Liu, M.; Li, Q.; Cheng, J.; Li, W.; Li, H.B. Tetrel bond of pseudohalide anions with XH3F (X = C, Si, Ge, and Sn) and its role in SN2 reaction. J. Chem. Phys. 2016, 145, 224310. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Guo, X.; Yang, X.; Li, W.; Cheng, J.; Li, H.B. A σ-hole interaction with radical species as electron donors: does single-electron tetrel bonding exist? Phys. Chem. Chem. Phys. 2014, 16, 11617–11625. [Google Scholar] [CrossRef]
- Mitzel, N.W.; Losehand, U. β-Donor Interactions of Exceptional Strength inN, N-Dimethylhydroxylaminochlorosilane, ClH2SiONMe2. J. Am. Chem. Soc. 1998, 120, 7320–7327. [Google Scholar] [CrossRef]
- Blanco, M.A.; Pendás, A.M.; Francisco, E. Interacting quantum atoms: A correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J. Chem. Theory Comput. 2005, 1, 1096–1109. [Google Scholar] [CrossRef] [PubMed]
- Francisco, E.; Pendás, A.M.; Blanco, M.A. A molecular energy decomposition scheme for atoms in molecules. J. Chem. Theory Comput. 2006, 2, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Pendás, A.M.; Francisco, E.; Blanco, M.A.; Gatti, C. Bond paths as privileged exchange channels. Chemistry 2007, 13, 9362–9371. [Google Scholar] [CrossRef] [PubMed]
- Pendás, A.M.; Blanco, M.A.; Francisco, E. Steric repulsions, rotation barriers, and stereoelectronic effects: A real space perspective. J. Comput. Chem. 2009, 30, 98–109. [Google Scholar] [CrossRef]
- Francisco, E.; Casals-Sainz, J.L.; Rocha-Rinza, T.; Martín Pendás, A. Partitioning the DFT exchange-correlation energy in line with the interacting quantum atoms approach. Theor. Chem. Acc. 2016, 135. [Google Scholar] [CrossRef]
- Keith, T.A. AIMAll (Version 12.06.03); TK Gristmill Software: Overland Park, KS, USA, 2012. [Google Scholar]
- Shavitt, I.; Bartlett, R.J. Many-Body Methods in Chemistry and Physics. MBPT and Coupled-Cluster Theory, 1st ed.; Cambridge Molecular Science, Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- McWeeny, R.; Sutcliffe, B.T. Methods of Molecular Quantum Mechanics; Theoretical Chemistry; A Series of Monographs; Academic Press Inc.: Cambridge, MA, USA, 1969. [Google Scholar]
- Martín Pendás, A.; Blanco, M.A.; Francisco, E. Chemical Fragments in Real Space: Definitions, Properties, and Energetic Decompositions. J. Comput. Chem. 2007, 28, 161–184. [Google Scholar] [CrossRef]
- Møller, C.; Plesset, M.S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618. [Google Scholar] [CrossRef]
- Tkatchenko, A.; DiStasio, R.A.; Head-Gordon, M.; Scheffler, M. Dispersion-corrected Møller–Plesset second-order perturbation theory. J. Chem. Phys. 2009, 131, 094106. [Google Scholar] [CrossRef]
- Holguín-Gallego, F.J.; Chávez-Calvillo, R.; García-Revilla, M.; Francisco, E.; Pendás, Á.M.; Rocha-Rinza, T. Electron correlation in the interacting quantum atoms partition via coupled-cluster lagrangian densities. J. Comput. Chem. 2016, 37, 1753–1765. [Google Scholar] [CrossRef]
- Ziegler, T.; Rauk, A. On the calculation of bonding energies by the Hartree Fock Slater method. Theor. Chim. Acta 2006, 46, 1–10. [Google Scholar] [CrossRef]
- Morokuma, K.; Kitaura, K. Energy Decomposition Analysis of Molecular Interactions. Chem. Appl. Atom. Mol. Electrostat. Potentials 2013, 215–242. [Google Scholar] [CrossRef]
- Su, P.; Li, H. Energy decomposition analysis of covalent bonds and intermolecular interactions. J. Chem. Phys. 2009, 131, 014102. [Google Scholar] [CrossRef] [PubMed]
- Martín Pendás, A.; Blanco, M.A.; Francisco, E. The nature of the hydrogen bond: a synthesis from the interacting quantum atoms picture. J. Chem. Phys. 2006, 125, 184112. [Google Scholar] [CrossRef] [PubMed]
- Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Sun, Q.; Berkelbach, T.C.; Blunt, N.S.; Booth, G.H.; Guo, S.; Li, Z.; Liu, J.; McClain, J.D.; Sayfutyarova, E.R.; Sharma, S.; et al. PySCF: The Python-based simulations of chemistry framework. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1340. [Google Scholar] [CrossRef]
- Taube, A.G.; Bartlett, R.J. Frozen natural orbital coupled-cluster theory: Forces and application to decomposition of nitroethane. J. Chem. Phys. 2008, 128, 164101. [Google Scholar] [CrossRef]
- Martín Pendás, A.; Francisco, E. Promolden. A QTAIM/IQA Code. Unpublished work.
- Martín Pendás, A.; Blanco, M.A.; Francisco, E. Two-electron integrations in the quantum theory of atoms in molecules. J. Chem. Phys. 2004, 120, 4581. [Google Scholar] [CrossRef] [PubMed]
- Martín Pendás, A.; Francisco, E.; Blanco, M.A. Two-electron integrations in the Quantum Theory of Atoms in Molecules with correlated wave functions. J. Comput. Chem. 2005, 26, 344. [Google Scholar] [CrossRef] [PubMed]
- Rafat, M.; Popelier, P.L.A. The Quantum Theory of Atoms in Molecules. From Solid State to DNA and Drug Design; WIley-VCH: Hoboken, NJ, USA, 2007; p. 121. [Google Scholar]
- Francisco, E.; Menéndez Crespo, D.; Costales, A.; Martín Pendás, A. A Multipolar Approach to the Interatomic Covalent Interaction Energy. J. Comput. Chem. 2017. [Google Scholar] [CrossRef] [PubMed]
- Bader, R.F.W.; Stephens, M.E. Spatial localization of the electronic pair and number distributions in molecules. J. Am. Chem. Soc. 1975, 97, 7391–7399. [Google Scholar] [CrossRef]
- Menéndez-Crespo, D.; Costales, A.; Francisco, E.; Martín Pendás, Á. Real-Space In Situ Bond Energies: Toward A Consistent Energetic Definition of Bond Strength. Chem. Eur. J. 2018, 24, 9101–9112. [Google Scholar] [CrossRef] [PubMed]
- Sainz, J.L.; Jara-Cortés, J.; Hernández-Trujillo, J.; Guevara-Vela, J.; Francisco, E.; Martín Pendás, A. Chemical Bonding in Excited States: Electron Localization, Delocalization and Statistics in Real Space. ChemRxiv 2019. [Google Scholar] [CrossRef]
- Fernández-Alarcón, A.; Casals-Sainz, J.; Guevara-Vela, J.M.; Costales, A.; Francisco, E.; Martín Pendás, A.; Rocha-Rinza, T. Partition of electronic excitation energies: The IQA/EOM-CCSD method. Phys. Chem. Chem. Phys. 2019. [Google Scholar] [CrossRef]
System (A···B) | (CCSD) | (IQA) | diff | Q | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4···F- | −3.42 | −3.41 | 0.01 | −0.0112 | −0.9891 | −1.0003 | 8.42 | 3.77 | −6.27 | −8.46 | −9.33 | −15.60 | 3.73 |
SiH4···F- | −60.17 | −59.87 | 0.31 | −0.0426 | −0.9579 | −1.0005 | 123.02 | 87.24 | −183.63 | −82.43 | −86.50 | −270.13 | 127.83 |
GeH4···F- | −40.17 | −38.89 | 1.28 | −0.0830 | −0.9170 | −1.0001 | 79.50 | 46.57 | −92.28 | −69.62 | −72.69 | −164.97 | 56.46 |
CH3F···NCH | −1.52 | −1.36 | 0.16 | −0.0033 | 0.0032 | −0.0000 | 3.37 | 3.47 | −1.94 | −5.53 | −6.25 | −8.19 | 1.31 |
CH3F···N3− | −9.21 | −8.78 | 0.44 | −0.0200 | −0.9789 | −0.9989 | 11.18 | 5.05 | −8.47 | −14.46 | −16.54 | −25.01 | 1.77 |
CH3F···NCO- | −9.89 | −9.69 | 0.21 | −0.0188 | −0.9809 | −0.9997 | 10.11 | 6.32 | −11.73 | −12.96 | −14.39 | −26.12 | 3.47 |
CH3F···OCN- | −8.37 | −8.31 | 0.06 | −0.0147 | −0.9854 | −1.0001 | 10.24 | 5.51 | −9.28 | −12.97 | −14.78 | −24.06 | 2.78 |
SiH3F···NCH | −3.06 | −3.02 | 0.04 | −0.0052 | 0.0043 | −0.0008 | 8.44 | 10.29 | −5.06 | −14.99 | −16.68 | −21.75 | 3.74 |
SiH3F···N3− | −40.91 | −41.45 | −0.54 | −0.0678 | −0.9282 | −0.9960 | 73.85 | 70.33 | −103.27 | −77.13 | −82.36 | −185.64 | 67.05 |
GeH3F···NCH | −3.65 | −2.99 | 0.66 | −0.0031 | 0.0041 | 0.0010 | 9.20 | 9.77 | −5.92 | −14.31 | −16.04 | −21.96 | 4.66 |
GeH3F···N3− | −36.72 | −36.31 | 0.40 | −0.1110 | −0.8878 | −0.9988 | 46.32 | 39.64 | −53.01 | −65.10 | −69.26 | −122.27 | 20.86 |
CO2···NCH | −1.60 | −2.08 | −0.48 | −0.0056 | 0.0059 | 0.0003 | 3.55 | 4.13 | −2.28 | −6.58 | −7.47 | −9.76 | 1.09 |
CO2···N3− | −6.79 | −6.46 | 0.34 | −0.0236 | −0.9757 | −0.9994 | 12.43 | 8.07 | −9.87 | −15.31 | −17.09 | −26.96 | 5.20 |
CO2···CN- | −8.25 | −8.64 | −0.39 | −0.0564 | −0.9428 | −0.9992 | 14.77 | 11.78 | −10.12 | −23.26 | −25.07 | −35.19 | 3.29 |
CO2···CO | −0.65 | −1.14 | −0.49 | −0.0058 | 0.0058 | 0.0000 | 2.71 | 2.88 | −0.76 | −5.31 | −5.97 | −6.73 | 0.28 |
CO2···CS | −1.29 | −1.83 | −0.54 | −0.0105 | 0.0096 | −0.0008 | 3.84 | 4.19 | −1.68 | −7.27 | −8.19 | −9.87 | 0.77 |
CO2···Br- | −5.60 | −4.99 | 0.62 | −0.0401 | −0.9600 | −1.0001 | 9.08 | 6.79 | −4.97 | −14.01 | −15.89 | −20.86 | 1.87 |
CO2···Kr | −0.48 | +0.03 | 0.52 | −0.0035 | 0.0028 | −0.0007 | 0.58 | 2.33 | −0.08 | −2.29 | −2.79 | −2.88 | 0.61 |
CO2···NC- | −8.34 | −8.89 | −0.55 | −0.0333 | −0.9662 | −0.9996 | 14.29 | 10.83 | −12.70 | −19.43 | −21.31 | −34.01 | 5.69 |
CO2···NH3 | −2.09 | −2.41 | −0.31 | −0.0158 | 0.0155 | −0.0003 | 6.63 | 7.39 | −4.12 | −11.06 | −12.32 | −16.43 | 2.97 |
CO2···OC | −0.44 | −0.91 | −0.47 | 0.0001 | −0.0000 | 0.0001 | 1.11 | 1.40 | −0.57 | −2.39 | −2.85 | −3.42 | 0.12 |
CO2···OH2 | −2.24 | −2.52 | −0.28 | −0.0051 | 0.0052 | 0.0000 | 5.42 | 5.87 | −3.86 | −8.86 | −9.94 | −13.81 | 2.43 |
CO2···SH- | −3.99 | −4.32 | −0.33 | −0.0244 | −0.9758 | −1.0003 | 6.64 | 3.96 | −3.67 | −9.68 | −11.25 | −14.93 | 0.93 |
SiO2···NCH | −22.43 | −21.00 | 1.42 | −0.0174 | 0.0185 | 0.0010 | 57.82 | 77.23 | −89.17 | −62.94 | −66.89 | −156.06 | 72.12 |
SiO2···CO | −9.61 | −8.69 | 0.92 | −0.0112 | 0.0114 | 0.0002 | 49.33 | 69.34 | −57.46 | −66.28 | −69.91 | −127.37 | 52.39 |
SiO2···CS | −30.17 | −28.78 | 1.39 | −0.0082 | 0.0086 | 0.0003 | 75.50 | 92.86 | −107.86 | −85.39 | −89.29 | −197.15 | 82.98 |
SiO2···Br- | −78.06 | −76.19 | 1.87 | −0.1552 | −0.8433 | −0.9985 | 60.08 | 84.17 | −134.94 | −79.98 | −85.51 | −220.45 | 64.27 |
CS2···CO | −0.77 | −0.86 | −0.09 | −0.0008 | 0.0010 | 0.0002 | 0.96 | 1.64 | −0.09 | −2.90 | −3.36 | −3.45 | −0.31 |
CS2···CS | −0.95 | −0.46 | 0.49 | −0.0007 | 0.0006 | −0.0001 | 3.95 | 3.57 | −0.40 | −6.37 | −7.57 | −7.98 | 1.14 |
CS2···OH2 | −1.48 | −1.97 | −0.40 | 0.0012 | −0.0003 | 0.0009 | 2.44 | 3.17 | −1.88 | −4.99 | −5.70 | −7.58 | 0.61 |
GeO2···Br- | −65.37 | −65.29 | 0.08 | −0.2923 | −0.7068 | −0.9991 | 23.17 | 48.63 | −44.92 | −88.70 | −92.17 | −137.09 | −16.90 |
A···B | CCSD | DFT | A···B | CCSD | DFT |
---|---|---|---|---|---|
CH4···F- | 0.0910 | 0.1281 | CO2···Br- | 0.1649 | 0.2030 |
SiH4···F- | 0.6142 | 0.7611 | CO2···Kr | 0.0299 | 0.0357 |
GeH4···F- | 0.5431 | 0.6878 | CO2···NC- | 0.1871 | 0.2364 |
CH3F···NCH | 0.0602 | 0.0752 | CO2···NH3 | 0.1137 | 0.1405 |
CH3F···N3− | 0.1564 | 0.1877 | CO2···OC | 0.0274 | 0.0338 |
CH3F···NCO- | 0.1328 | 0.1672 | CO2···OH2 | 0.0878 | 0.1086 |
CH3F···OCN- | 0.1378 | 0.1700 | CO2···SH- | 0.1178 | 0.1425 |
SiH3F···NCH | 0.1526 | 0.1837 | SiO2···NCH | 0.5048 | 0.6375 |
SiH3F···N3− | 0.6431 | 0.7535 | SiO2···CO | 0.5439 | 0.7054 |
GeH3F···NCH | 0.1479 | 0.1770 | SiO2···CS | 0.6823 | 0.9346 |
GeH3F···N3− | 0.5702 | 0.6671 | SiO2···Br- | 0.6868 | 0.8568 |
CO2···NCH | 0.0694 | 0.0860 | CS2···CO | 0.0368 | 0.0431 |
CO2···N3− | 0.1546 | 0.1919 | CS2···CS | 0.0803 | 0.0930 |
CO2···CN- | 0.2320 | 0.2910 | CS2···OH2 | 0.0560 | 0.0677 |
CO2···CO | 0.0596 | 0.0726 | GeO2···Br- | 0.7631 | 0.9514 |
CO2···CS | 0.0806 | 0.0980 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casals-Sainz, J.L.; Castro, A.C.; Francisco, E.; Pendás, Á.M. Tetrel Interactions from an Interacting Quantum Atoms Perspective. Molecules 2019, 24, 2204. https://doi.org/10.3390/molecules24122204
Casals-Sainz JL, Castro AC, Francisco E, Pendás ÁM. Tetrel Interactions from an Interacting Quantum Atoms Perspective. Molecules. 2019; 24(12):2204. https://doi.org/10.3390/molecules24122204
Chicago/Turabian StyleCasals-Sainz, José Luis, Aurora Costales Castro, Evelio Francisco, and Ángel Martín Pendás. 2019. "Tetrel Interactions from an Interacting Quantum Atoms Perspective" Molecules 24, no. 12: 2204. https://doi.org/10.3390/molecules24122204
APA StyleCasals-Sainz, J. L., Castro, A. C., Francisco, E., & Pendás, Á. M. (2019). Tetrel Interactions from an Interacting Quantum Atoms Perspective. Molecules, 24(12), 2204. https://doi.org/10.3390/molecules24122204