Effects of Pecan Nut (Carya illinoiensis) and Roselle Flower (Hibiscus sabdariffa) as Antioxidant and Antimicrobial Agents for Sardines (Sardina pilchardus)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Total Phenolic Content and DPPH Radical Scavenging Activity
2.2. Microbiological Analysis
2.3. Thiobarbituric Acid Reactive Substances (TBARS)
2.4. FA Analysis
2.5. Determination of Hexanal by HS-GC-MS
2.6. Biogenic Amine (BA) Analysis
2.7. Sensory Analysis
3. Materials and Methods
3.1. Natural Products
3.2. Preparation of Extracts for Determination of Total Phenolic Content and DPPH Radical Activity Scavenging
3.3. Antioxidant Analyses of Extracts of Pecan Nut and Roselle
3.3.1. DPPH Radical Scavenging Activity
3.3.2. Determination of Total Phenolic Content
3.4. Fish Sample Preparation
3.5. Preparation of Samples
3.6. Microbiological Analysis
3.7. Thiobarbituric Acid Reactive Substances (TBARS)
3.8. Fatty Acid Methyl Ester (FAME) Analysis
3.9. Determination of Hexanal by HS-GC/MS
3.10. Biogenic amines (BA) Analysis
3.11. Preference Sensory Analysis
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
TPC | Total Polyphenol Content |
ABTS | 2,2′azino-bis(3-ethyl-benzothiazoline-6-sulfonicacid) |
Trolox | (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid |
GAE | mg of gallic acid equivalents |
DW | dry weight |
HPLC | High Performance Liquid Chromatography |
TEAC | Trolox Equivalent Antioxidant Capacity |
TE | Trolox Equivalent |
TBARs | Thiobarbituric Acid Reactive substances |
BHA | Butylated hydroxyanisole |
BHT | Butylated hydroxytoluene |
r.t. | room temperature |
AMU | atomic mass unit |
BA | Biogenic amines |
CAD | Cadaverine |
CFU | Colony-forming units |
DHA | cis-4,7,10,13,16,19-docosahexaenoic acid |
DO | Dopamine |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
EDTA | Ethylenediaminetetraacetic acid |
EPA | cis-5,8,11,14,17-eicosapentaenoic acid |
EU | European Union |
FA | Fatty Acids |
FAME | Fatty Acids Methyl Ester |
FID | flame ionization detector |
Folin | Folin-Ciocalteu Analysis |
FRAP | Ferric reducing antioxidant power |
FW | Fresh weight |
GC | Gas chromatography |
HIS | Histamine |
HS-GC/MS | Headspace gas chromatography mass spectrometry |
MDA | Malonaldehyde |
MUFA | monounsaturated fatty acids |
n3 | n3-polyunsaturated fatty acid |
n6 | n6-polyunsaturated fatty acid |
OC | Octopamine |
OPT | o-Ophtalaldehyde |
PN | Pecan Nut |
PTFE | Polytetrafluoroethylene |
PUFA | polyunsaturated fatty acids |
PUT | putrescine |
RSA | Radical scavenging activity |
SD | Standard deviation |
SER | Serotonine |
SFA | Saturated fatty acids |
SPD | Spermidine |
SPM | Spermine |
SW | Sample weight |
TRP | Ttryptamine |
TSA | Tryptone soya agar |
TYR | Tyramine |
UV/VIS | Ultraviolet-visible spectroscopy |
v/v | volume volume |
w/w | weight weight |
RT | Room Temperature |
References
- European Commission, Directorate-General for Maritime Affairs and Fisheries, Director-General. The EU Fish Market. EUMOFA (European Market Observatory for Fisheries and Aquaculture Products). Available online: https://www.eumofa.eu/documents/20178/77960/The+EU+fish+market+-+2016+Edition.pdf (accessed on 20 July 2016).
- Erkan, N. Original article quality assessment of whole and gutted sardines (Sardina pilchardus) stored in ice. Int. J. Food Sci. Technol. 2008, 1549–1559. [Google Scholar] [CrossRef]
- Vicetti, R.; Ishitani, T.; Salas, A.; Ayala, M. Use of alpha-tocopherol combined with synergists and compared to other antioxidants on the oxidative stability of sardine skin lipids. J. Food Compost. Anal. 2005, 18, 131–137. [Google Scholar] [CrossRef]
- Chan, K.W.; Khong, N.M.; Iqbal, S.; Ch’Ng, S.E.; Babji, A.S. Preparation of clove buds deodorized aqueous extract (CDAE) and evaluation of its potential to improve oxidative stability of chicken meatballs in comparison to synthetic and natural. J. Food Qual. 2012, 35, 190–199. [Google Scholar] [CrossRef]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid—Protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, G.; Zhang, C.; Wu, M.; Wu, S.; Liu, Q. Research progress of natural antioxidants in foods for the treatment of diseases. Food Sci. Hum. Wellness 2014. [Google Scholar] [CrossRef]
- Bolling, B.W.; Chen, C.Y.O.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [PubMed]
- De La Rosa, L.A.; Alvarez-Parrilla, E.; Shahidi, F. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis). J. Agric. Food Chem. 2011, 59, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Bouali, I.; Trabelsi, H.; Herchi, W.; Martine, L.; Albouchi, A.; Bouzaien, G.; Sifi, S.; Boukhchina, S.; Berdeaux, O. Analysis of pecan nut (Carya illinoinensis) unsaponifiable fraction. Effect of ripening stage on phytosterols and phytostanols composition. Food Chem. 2014, 164, 309–316. [Google Scholar] [CrossRef]
- Hygreeva, D.; Pandey, M.C.; Radhakrishna, K. Potential Applications of Plant Based Derivatives as Fat Replacers, Antioxidants and Antimicrobials in Fresh and Processed Meat Products; Elsevier: Amsterdam, The Netherlands, 2014; Volume 98, ISBN 9108212473. [Google Scholar]
- Borrás-linares, I.; Fernández-arroyo, S.; Arráez-roman, D.; Palmeros-suárez, P.A. Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Ind. Crop. Prod. 2015, 69, 385–394. [Google Scholar] [CrossRef]
- Alasalvar, C.; Shahidi, F. Natural antioxidants in tree nuts. Eur. J. Lipid Sci. Technol. 2009, 1056–1062. [Google Scholar] [CrossRef]
- Villarreal-Lozoya, J.E.; Lombardini, L.; Cisneros-Zevallos, L. Phytochemical constituents and antioxidant capacity of different pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars. Food Chem. 2007, 102, 1241–1249. [Google Scholar] [CrossRef]
- Mak, Y.W.; Chuah, L.O.; Ahmad, R.; Bhat, R. Antioxidant and antibacterial activities of hibiscus (Hibiscus rosa-sinensis L.) and Cassia (Senna bicapsularis L.) flower extracts. J. King Saud Univ. Sci. 2013, 25, 275–282. [Google Scholar] [CrossRef]
- Mohamed, A.E.; Afify, R.; Mohamed, H.; Hassan, M. Free radical scavenging activity of three different flowers-Hibiscus rosa-sinensis, Quisqualis indica and Senna surattensis. Asian Pac. J. Trop. Biomed. 2016, 6, 930–935. [Google Scholar] [CrossRef]
- Gutiérrez-Alcántara, E.J.; Gómez-Aldapa, C.A.; Román-Gutiérrez, A.D.; Rangel-Vargas, E.; González-Olivares, L.G.; Castro-Rosas, J. Antimicrobial activity of roselle Hibiscus sabdariffa calyx extracts on culture media and carrots against multidrug-resistant salmonella strains isolated from raw carrots. J. Food Saf. 2016, 36, 450–458. [Google Scholar] [CrossRef]
- Gómez-Aldapa, C.A.; Refugio Torres-Viela, M.; Amaya-Acosta, M.A.; Rangel-Vargas, E.; Villaruel-López, A.; Castro-Rosas, J. Behavior of thirteen foodborne bacteria on whole Hass avocado and potential of roselle calyx extracts as alternative disinfectant agents of avocado. J. Food Saf. 2017, 37, 1–8. [Google Scholar] [CrossRef]
- Mendes, R.; Cardoso, C.; Pestana, C. Measurement of malondialdehyde in fish: A comparison study between HPLC methods and the traditional spectrophotometric test. Food Chem. 2009, 112, 1038–1045. [Google Scholar] [CrossRef]
- Carmen García-Martínez, M.; Fontecha, J.; Velasco, J.; Holgado, F.; Márquez-Ruiz, G. Occurrence of lipid oxidation compounds in commercialised functional dairy products. Int. Dairy J. 2018, 86, 27–35. [Google Scholar] [CrossRef]
- Özogul, F.; Kuley, E.; Kenar, M. Effects of rosemary and sage tea extract on biogenic amines formation of sardine (Sardina pilchardus) fillets. Int. J. Food Sci. Technol. 2011, 46, 761–766. [Google Scholar] [CrossRef]
- Erkan, N.; Tosun, Y. The use of thyme and laurel essential oil treatments to extend the shelf life of bluefish (Pomatomus saltatrix) during storage in ice. J. Verbrauch. Lebensm. 2011, 6, 39–48. [Google Scholar] [CrossRef]
- Özogul, Y.; Özogul, F. Fatty acid profiles of commercially important fish species from the Mediterranean, Aegean and Black Seas. Food Chem. 2007, 100, 1634–1638. [Google Scholar] [CrossRef]
- Malik, N.S.A.; Perez, J.L.; Lombardini, L.; Cornacchia, R.; Cisneros-zevallos, L.; Braford, J. Phenolic compounds and fatty acid composition of organic and conventional grown pecan kernels. J. Sci. Food Agric. 2009, 89, 2207–2213. [Google Scholar] [CrossRef]
- Ahmad, M.U.; Husain, S.K.; Ahmad, I.; Osman, S.M. Hibiscus sabdarifla seed oil: A re-investigationa. J. Sci. Food Agric. 1979, 424–428. [Google Scholar] [CrossRef]
- Siriwardhana, N.; Kalupahana, N.S.; Moustaid-Moussa, N. Health Benefits of n-3 Polyunsaturated Fatty Acids. Eicosapentaenoic Acid and Docosahexaenoic Acid, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 65, ISBN 9780124160033. [Google Scholar]
- Gurr, M.I.; Henry, C.J.K. The department of health cardiovascular review group and public health policy: An alternative view. J. R. Soc. Promot. Health 1995, 115, 279–281. [Google Scholar] [CrossRef]
- Rodr, A. Determination of hexanal as indicator of the lipidic oxidation state in potato crisps using gas chromatography and high-performance liquid chromatography. J. Chromatogr. A 2004, 1046, 75–81. [Google Scholar] [CrossRef]
- Varlet, V.; Prost, C.; Serot, T. Food chemistry volatile aldehydes in smoked fish: Analysis methods, occurence and mechanisms of formation. Food Chem. 2007, 105, 1536–1556. [Google Scholar] [CrossRef]
- Santos, M.H.S. Biogenic amines: Their importance in foods. Int. J. Food Microbial. 1996, 29, 213–231. [Google Scholar] [CrossRef]
- Taylor, S.L.; Eitenmiller, R.R. Histamine Food Poisoning: Toxicology and Clinical Aspects. CRC Crit. Rev. Toxicol. 1986, 17, 91–128. [Google Scholar] [CrossRef] [PubMed]
- Hui, J.Y.; Taylor, S.L. Inhibition of in viva histamine metabolism in rats by foodborne and pharmacologic inhibitors of diamine oxidase, histamine N-methyltransferase, and monoamine oxidase. Toxicol. Appl. Pharmacol. 1985, 249, 241–249. [Google Scholar] [CrossRef]
- Secil Karabacak, H.B. Effects of Urtica dioica and Hibiscus sabdariffa on the quality and safety of sucuk (Turkish dry-fermented sausage). Meat Sci. 2008, 78, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Gallego, M.G.; Gordon, M.H.; Segovia, F.J.; Skowyra, M. Antioxidant properties of three aromatic herbs (Rosemary, Thyme and Lavender) in oil-in-water emulsions. J. Am. Oil Chem. Soc. 2013, 90, 1559–1568. [Google Scholar] [CrossRef]
- Gallego, M.G.; Gordon, M.H.; Segovia, F.J.; Almajano, M.P. Caesalpinia decapetala extracts as inhibitors of lipid oxidation in beef patties. Molecules 2015, 20, 13913–13926. [Google Scholar] [CrossRef] [PubMed]
- Viegas, I.; Jarak, I.; Rito, J.; Carvalho, R.A.; Metón, I.; Pardal, M.A.; Baanante, I.V.; Jones, J.G. Effects of dietary carbohydrate on hepatic de novo lipogenesis in European seabass (Dicentrarchus labrax L.). J. Lipid Res. 2016, 57, M067850. [Google Scholar] [CrossRef] [PubMed]
- Komprda, T.; Novická, K.; Kalhotka, L.; Smělá, D. Biogenic amine content in sterilised and pasteurised long-term stored processed cheese. Czech J. Food Sci. 2005, 23, 209–216. [Google Scholar] [CrossRef]
- Herna, T.; Vidal-carou, M.C. Ion-pair high-performance liquid chromatographic determination of biogenic amines in meat and meat products. J. Agric. Food Chem. 1996, 44, 2710–2715. [Google Scholar]
- Christensen, Z.T.; Ogden, L.V.; Dunn, M.L.; Eggett, D.L. Multiple comparison procedures for analysis of ranked data. J. Food Sci. 2006, 71, S132–S143. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Sample | TPC (mg GAE/g FW) | RSA (mg TE/g DW) |
---|---|---|
Defatted Pecan Nut kernel | 22.95 ± 0.04 | 37.63 ± 1.08 |
Roselle flower | 22.40 ± 0.02 | 19.69 ± 0.42 |
Treatment | Day 1 | Day 3 |
---|---|---|
Control | - | + |
5%Pecan Nut | - | + |
10% Pecan Nut | - | + |
5% Roselle | - | - |
5% Roselle + 5%Pecan Nut | - | - |
0.1% BHA | - | - |
Treatment | Hours | ||
---|---|---|---|
18 | 50 | 66 | |
Control | 1.61 a ± 0.05 | 4.14 a ± 0.25 | 5.04 a ± 0.01 |
5% Pecan Nut | 0.52 bc ± 0.13 | 1.80 b ± 0.35 | 4.80 a ± 0.01 |
10% Pecan Nut | 0.33 cd ± 0.03 | 0.29 d ± 0.01 | 0.89 c ± 0.15 |
5% Roselle | 0.27 d ± 0.02 | 1.10 c ± 0.08 | 2.33 b ± 0.23 |
5% Roselle + 5% Pecan Nut | 0.25 d ± 0.02 | 0.76 cd ± 0.03 | 2.18 b ± 0.43 |
0.1% BHA | 0.58 b ± 0.06 | 0.99 b ± 0.08 | 4.29 a ± 0.02 |
Fatty Acids (%) | Control | 5% Pecan Nut | 10% Pecan Nut | 5% Roselle | 5% Roselle + 5% Pecan Nut | 0.1% BHA |
---|---|---|---|---|---|---|
C6:0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
C8:0 | 0.20 ± 0.28 | 0.02 ± 0.02 | 0.01 ± 0.01 | 0.17 ± 0.23 | 0.02 ± 0.03 | 0.00 ± 0.00 |
C10:0 | 0.18 ± 0.26 | 0.02 ± 0.02 | 0.02 ± 0.02 | 0.13 ± 0.19 | 0.02 ± 0.03 | 0.06 ± 0.09 |
C11:0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
C12:0 | 0.00 ± 0.00 | 0.01 ± 0.02 | 0.01 ± 0.01 | 0.00 ± 0.00 | 0.02 ± 0.02 | 0.06 ± 0.08 |
C13:0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
C14:0 | 2.54 a ± 0.10 | 0.63 b ± 0.14 | 0.29 b ± 0.06 | 2.49 a ± 0.24 | 0.71 b ± 0.05 | 3.22 a ± 0.78 |
C15:0 | 0.54 ± 0.01 | 0.12 ± 0.02 | 0.06 ± 0.01 | 0.54 ± 0.06 | 0.14 ± 0.01 | 0.72 ± 0.15 |
C16:0 | 24.29 a ± 0.71 | 11.40 bc ± 0.76 | 9.33 c ± 0.59 | 24.75 a ± 0.71 | 12.04 b ± 0.38 | 26.01 a ± 0.58 |
C17:0 | 0.45 ± 0.03 | 0.14 ± 0.01 | 0.10 ± 0.00 | 0.47 ± 0.05 | 0.17 ± 0.00 | 0.64 ± 0.20 |
C18:0 | 3.82 a ± 0.19 | 2.52 b ± 0.08 | 2.35 b ± 0.07 | 3.35 a ± 0.19 | 2.54 b ± 0.05 | 3.95 a ± 0.38 |
C20:0 | 0.82 ± 0.06 | 0.14 ± 0.04 | 0.07 ± 0.00 | 0.20 ± 0.10 | 0.19 ± 0.01 | 0.57 ± 0.81 |
C21:0 | 0.07 ± 0.10 | 0.01 ± 0.02 | 0.01 ± 0.01 | 0.12 ± 0.01 | 0.01 ± 0.02 | 0.19 ± 0.04 |
C22:0 | 0.67 ± 0.04 | 0.13 ± 0.05 | 0.05 ± 0.01 | 0.68 ± 0.11 | 0.16 ± 0.00 | 0.83 ± 0.23 |
C23:0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
C24:0 | 0.69 ± 0.10 | 0.10 ± 0.01 | 0.04 ± 0.04 | 0.80 ± 0.15 | 0.16 ± 0.04 | 0.67 ± 0.01 |
ƩSFA 2 | 33.89 | 15.19 | 12.30 | 33.40 | 16.13 | 36.87 |
C14:1 | 0.00 ± 0.00 | 0.01 ± 0.02 | 0.00 ± 0.00 | 0.05 ± 0.08 | 0.01 ± 0.02 | 0.08 ± 0.11 |
C15:1 | 0.07 ± 0.10 | 0.01 ± 0.02 | 0.00 ± 0.00 | 0.06 ± 0.08 | 0.01 ± 0.02 | 0.07 ± 0.10 |
C16:1 | 1.72 a ± 0.04 | 0.39 b ± 0.09 | 0.20 b ± 0.03 | 1.65 a ± 0.19 | 0.49 b ± 0.01 | 2.12 a ± 0.42 |
C17:1 | 0.18 ± 0.06 | 0.05 ± 0.04 | 0.07 ± 0.01 | 0.14 ± 0.04 | 0.03 ± 0.00 | 0.10 ± 0.14 |
C18:1n | 15.03 b ± 1.19 | 48.49 a ± 2.02 | 52.62 a ± 1.83 | 16.24 b ± 0.35 | 46.1 a ± 1.37 | 15.62 b ± 3.44 |
C20:1n9 | 0.23 ± 0.10 | 0.22 ± 0.00 | 0.21 ± 0.02 | 0.45 ± 0.41 | 0.22 ± 0.01 | 0.67 ± 0.21 |
C22:1n9 | 5.76 a ± 0.06 | 0.96 b ± 0.20 | 0.46 b ± 0.12 | 5.70 a ± 0.33 | 1.34 b ± 0.04 | 6.39 a ± 0.53 |
C24:1 | 0.46 ± 0.23 | 0.09 ± 0.06 | 0.03 ± 0.05 | 0.54 ± 0.25 | 0.11 ± 0.05 | 0.56 ± 0.37 |
ƩMUFA 2 | 23.44 | 50.23 | 53.60 | 24.82 | 48.32 | 25.61 |
C18:2n6t | 0.10 ± 0.14 | 0.00 ± 0.00 | 0.01 ± 0.01 | 0.00 ± 0.00 | 0.01 ± 0.01 | 0.12 ± 0.04 |
C18:2n6c | 6.57 b ± 0.56 | 28.15 a ± 0.40 | 29.32 a ± 0.70 | 7.25 b ± 0.10 | 27.55 a ± 0.57 | 6.22 b ± 2.18 |
C18:3n3 | 0.17 a ± 0.02 | 0.67 a ± 0.92 | 1.19 a ± 0.02 | 0.39 a ± 0.39 | 1.27 a ± 0.02 | 0.53 a ± 0.41 |
C18:3n6 | 0.64 ± 0.02 | 0.66 ± 0.78 | 0.10 ± 0.01 | 0.71 ± 0.02 | 0.11 ± 0.00 | 0.44 ± 0.39 |
C20:2 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
C20:3n6 | 0.31 ± 0.26 | 0.05 ± 0.08 | 0.00 ± 0.00 | 0.06 ± 0.08 | 0.00 ± 0.00 | 0.07 ± 0.10 |
C20:4n6 | 0.24 ± 0.34 | 0.04 ± 0.06 | 0.04 ± 0.01 | 0.58 ± 0.15 | 0.12 ± 0.01 | 0.51 ± 0.00 |
C20:3n6 | 0.00 ± 0.00 | 0.01 ± 0.02 | 0.01 ± 0.01 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
C20:5n3 | 0.87 ± 0.45 | 0.13 ± 0.08 | 0.07 ± 0.03 | 0.51 ± 0.17 | 0.09 ± 0.02 | 0.58 ± 0.49 |
C22:2 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
C22:6n3 | 22.98 a ± 0.27 | 3.59 bc ± 0.35 | 1.75 c ± 0.57 | 23.79 a ± 1.11 | 4.87 b ± 0.44 | 22.68 a ± 0.31 |
ƩPUFA 2 | 31.89 | 33.29 | 32.50 | 33.28 | 34.01 | 31.15 |
PUFA/SFA 3 | 0.94 | 2.19 | 2.64 | 1.00 | 2.11 | 0.84 |
Ʃn6 | 1.29 | 0.76 | 0.16 | 1.35 | 0.24 | 1.14 |
Ʃn3 | 24.03 | 4.39 | 3.02 | 24.68 | 6.22 | 23.78 |
n6/n3 4 | 0.05 | 0.17 | 0.05 | 0.05 | 0.04 | 0.05 |
DHA/EPA 5 | 26.38 | 27.60 | 25.08 | 47.02 | 55.97 | 39.33 |
Unidentified | 10.40 | 1.26 | 1.58 | 8.20 | 1.50 | 6.31 |
Control | 5% Pecan Nut | 10% Pecan Nut | 5% Roselle | 5% Roselle + 5% Pecan Nut | 0.1% BHA | |
---|---|---|---|---|---|---|
OC | 8.02 a ± 7.83 | 5.93 a ± 1.91 | 5.94 a ± 3.68 | 4.48 a ± 4.57 | 9.12 a ± 7.59 | 6.76 a ± 8.74 |
DO | 4.73 a± 3.10 | 0.68 a ± 0.50 | 1.36 a ± 0.00 | 8.27 a ± 0.98 | 10.26 a ± 3.62 | 7.57 a ± 6.25 |
PUT | 3.34 b ± 0.83 | 3.19 b ± 1.86 | 1.26 b ± 0.36 | 22.76 a ± 5.10 | 19.92 a ± 0.20 | 5.97 b ± 4.00 |
TYR | 4.61 a,b,c ± 0.76 | 4.97 a,b ± 0.88 | 1.14 c ± 0.55 | 7.92 a ± 1.24 | 8.24 a ± 0.39 | 2.13 b,c ± 1.30 |
CAD | 1.03 a ± 0.20 | 0.78 a ± 0.18 | 0.10 a ± 0.03 | 0.99 a ± 0.76 | 1.08 a ± 0.73 | 0.81 a ± 0.37 |
SER | 11.80 a ± 4.45 | 12.41 a ± 1.57 | 4.51 a ± 3.33 | 30.39 a ± 5.71 | 21.91 a ± 17.55 | 15.78 a ± 2.08 |
HIS | 1.62 b ± 1.11 | 1.53 b ± 0.12 | 0.90 b ± 0.58 | 14.08 a ± 1.23 | 11.69 a ± 2.88 | 4.49 b |
SPD | 7.28 a | 6.14 a | 6.55 a ± 2.47 | ND | ND | 7.17 a |
TRP | 6.64 a | 5.42 a | 2.01 a ± 1.62 | ND | ND | 10.34 a |
SPM | ND | ND | 6.48 | ND | ND | ND |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villasante, J.; Girbal, M.; Metón, I.; Almajano, M.P. Effects of Pecan Nut (Carya illinoiensis) and Roselle Flower (Hibiscus sabdariffa) as Antioxidant and Antimicrobial Agents for Sardines (Sardina pilchardus). Molecules 2019, 24, 85. https://doi.org/10.3390/molecules24010085
Villasante J, Girbal M, Metón I, Almajano MP. Effects of Pecan Nut (Carya illinoiensis) and Roselle Flower (Hibiscus sabdariffa) as Antioxidant and Antimicrobial Agents for Sardines (Sardina pilchardus). Molecules. 2019; 24(1):85. https://doi.org/10.3390/molecules24010085
Chicago/Turabian StyleVillasante, Juliana, Marina Girbal, Isidoro Metón, and María Pilar Almajano. 2019. "Effects of Pecan Nut (Carya illinoiensis) and Roselle Flower (Hibiscus sabdariffa) as Antioxidant and Antimicrobial Agents for Sardines (Sardina pilchardus)" Molecules 24, no. 1: 85. https://doi.org/10.3390/molecules24010085
APA StyleVillasante, J., Girbal, M., Metón, I., & Almajano, M. P. (2019). Effects of Pecan Nut (Carya illinoiensis) and Roselle Flower (Hibiscus sabdariffa) as Antioxidant and Antimicrobial Agents for Sardines (Sardina pilchardus). Molecules, 24(1), 85. https://doi.org/10.3390/molecules24010085