Next Article in Journal
Live Fluorescent Staining Platform for Drug-Screening and Mechanism-Analysis in Zebrafish for Bone Mineralization
Previous Article in Journal
Antioxidative Categorization of Twenty Amino Acids Based on Experimental Evaluation
Article Menu

Export Article

Open AccessArticle
Molecules 2017, 22(12), 2074; doi:10.3390/molecules22122074

One-Step Carbon Coating and Polyacrylamide Functionalization of Fe3O4 Nanoparticles for Enhancing Magnetic Adsorptive-Remediation of Heavy Metals

1
Chemistry Department, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
2
King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
3
Central Metallurgical Research and Development Institute, CMRDI, Helwan, 11421 Cairo, Egypt
*
Authors to whom correspondence should be addressed.
Received: 26 October 2017 / Revised: 21 November 2017 / Accepted: 23 November 2017 / Published: 27 November 2017
View Full-Text   |   Download PDF [3513 KB, uploaded 28 November 2017]   |  

Abstract

Magnetic nanoparticles are used in adsorptive removal of heavy metals from polluted wastewater. However, their poor stability in an acidic medium necessitates their protection with a coating layer. Coating magnetic nanoparticles with carbon showed proper protection but the heavy metal removal efficiency was slightly weak. However, to boost the removal efficiencies of surface functionalization, polyacrylamide was applied to carbon-coated Fe3O4 nanoparticles. In this paper, to facilitate the synthesis process, one-step carbon coating and polyacrylamide functionalization were conducted using the hydrothermal technique with the aim of enhancing the adsorptive removal capacity of Fe3O4 nanoparticles towards some heavy metals such as Cu(II), Ni(II), Co(II), and Cd(II). The results showed that the one-step process succeeded in developing a carbon coating layer and polyacrylamide functionality on Fe3O4 nanoparticles. The stability of the magnetic Fe3O4 nanoparticles as an adsorbent in an acidic medium was improved due to its resistance to the dissolution that was gained during carbon coating and surface functionalization with polyacrylamide. The adsorptive removal process was investigated in relation to various parameters such as pH, time of contact, metal ion concentrations, adsorbent dose, and temperature. The polyacrylamide functionalized Fe3O4 showed an improvement in the adsorption capacity as compared with the unfunctionalized one. The conditions for superior adsorption were obtained at pH 6; time of contact, 90 min; metal solution concentration, 200 mg/L; adsorbent dose, 0.3 g/L. The modeling of the adsorption data was found to be consistent with the pseudo-second-order kinetic model, which suggests a fast adsorption process. However, the equilibrium data modeling was consistent with both the Langmuir and Freundlich isotherms. Furthermore, the thermodynamic parameters of the adsorptive removal process, including ΔG°, ΔH°, and ΔS°, indicated a spontaneous and endothermic sorption process. The developed adsorbent can be utilized further for industrial-based applications. View Full-Text
Keywords: adsorption; water treatment; magnetic separation; nanotechnology; solvothermal technique; heavy metals adsorption; water treatment; magnetic separation; nanotechnology; solvothermal technique; heavy metals
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Habila, M.A.; ALOthman, Z.A.; El-Toni, A.M.; Labis, J.P.; Khan, A.; Al-Marghany, A.; Elafifi, H.E. One-Step Carbon Coating and Polyacrylamide Functionalization of Fe3O4 Nanoparticles for Enhancing Magnetic Adsorptive-Remediation of Heavy Metals. Molecules 2017, 22, 2074.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top