Next Article in Journal
Systematic Analysis of the Non-Extensive Statistical Approach in High Energy Particle Collisions—Experiment vs. Theory
Previous Article in Journal
Entropy, Topological Theories and Emergent Quantum Mechanics
Article Menu
Issue 3 (March) cover image

Export Article

Open AccessArticle
Entropy 2017, 19(3), 86; doi:10.3390/e19030086

Motion Sequence Decomposition-Based Hybrid Entropy Feature and Its Application to Fault Diagnosis of a High-Speed Automatic Mechanism

School of Mechanical and Power Engineering, North University of China, Taiyuan 030051, China
*
Author to whom correspondence should be addressed.
Academic Editor: J. A. Tenreiro Machado
Received: 16 December 2016 / Revised: 11 February 2017 / Accepted: 14 February 2017 / Published: 24 February 2017
(This article belongs to the Section Complexity)
View Full-Text   |   Download PDF [3174 KB, uploaded 24 February 2017]   |  

Abstract

High-speed automatic weapons play an important role in the field of national defense. However, current research on reliability analysis of automaton principally relies on simulations due to the fact that experimental data are difficult to collect in real life. Different from rotating machinery, a high-speed automaton needs to accomplish complex motion consisting of a series of impacts. In addition to strong noise, the impacts generated by different components of the automaton will interfere with each other. There is no effective approach to cope with this in the fault diagnosis of automatic mechanisms. This paper proposes a motion sequence decomposition approach combining modern signal processing techniques to develop an effective approach to fault detection in high-speed automatons. We first investigate the entire working procedure of the automatic mechanism and calculate the corresponding action times of travel involved. The vibration signal collected from the shooting experiment is then divided into a number of impacts corresponding to action orders. Only the segment generated by a faulty component is isolated from the original impacts according to the action time of the component. Wavelet packet decomposition (WPD) is first applied on the resulting signals for investigation of energy distribution, and the components with higher energy are selected for feature extraction. Three information entropy features are utilized to distinguish various states of the automaton using empirical mode decomposition (EMD). A gray-wolf optimization (GWO) algorithm is introduced as an alternative to improve the performance of the support vector machine (SVM) classifier. We carry out shooting experiments to collect vibration data for demonstration of the proposed work. Experimental results show that the proposed work in this paper is effective for fault diagnosis of a high-speed automaton and can be applied in real applications. Moreover, the GWO is able to provide a competitive diagnosis result compared with the genetic algorithm (GA) and the particle swarm optimization (PSO) algorithm. View Full-Text
Keywords: motion sequence decomposition; hybrid information entropy; wavelet packet decomposition; fault detection of automaton; gray-wolf optimization; support vector machine motion sequence decomposition; hybrid information entropy; wavelet packet decomposition; fault detection of automaton; gray-wolf optimization; support vector machine
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Wang, B.; Pan, H.; Du, H. Motion Sequence Decomposition-Based Hybrid Entropy Feature and Its Application to Fault Diagnosis of a High-Speed Automatic Mechanism. Entropy 2017, 19, 86.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top