Next Article in Journal
Implementing Demons and Ratchets
Next Article in Special Issue
Kinetic Theory of a Confined Quasi-Two-Dimensional Gas of Hard Spheres
Previous Article in Journal
Univariate and Multivariate Generalized Multiscale Entropy to Characterise EEG Signals in Alzheimer’s Disease
Previous Article in Special Issue
Nonlinear Relaxation Phenomena in Metastable Condensed Matter Systems
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Entropy 2017, 19(1), 33; doi:10.3390/e19010033

Heuristic Approach to Understanding the Accumulation Process in Hydrothermal Pores

1,†
and
1,2,†,*
1
ICS-3 Soft Condensed Matter, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
2
Department für Chemie-Physikalische Chemie, Universität zu Köln, 50939 Cologne, Germany
These authors contributed equally to this work.
*
Author to whom correspondence should be addressed.
Academic Editors: Giancarlo Franzese, Ivan Latella and Miguel Rubi
Received: 25 November 2016 / Revised: 10 January 2017 / Accepted: 11 January 2017 / Published: 13 January 2017
(This article belongs to the Special Issue Nonequilibrium Phenomena in Confined Systems)
View Full-Text   |   Download PDF [934 KB, uploaded 13 January 2017]   |  

Abstract

One of the central questions of humankind is: which chemical and physical conditions are necessary to make life possible? In this “origin-of-life” context, formamide plays an important role, because it has been demonstrated that prebiotic molecules can be synthesized from concentrated formamide solutions. Recently, it could be shown, using finite-element calculations combining thermophoresis and convection processes in hydrothermal pores, that sufficiently high formamide concentrations could be accumulated to form prebiotic molecules (Niether et al. (2016)). Depending on the initial formamide concentration, the aspect ratio of the pores, and the ambient temperature, formamide concentrations up to 85 wt % could be reached. The stationary calculations show an effective accumulation, only if the aspect ratio is above a certain threshold, and the corresponding transient studies display a sudden increase of the accumulation after a certain time. Neither of the observations were explained. In this work, we derive a simple heuristic model, which explains both phenomena. The physical idea of the approach is a comparison of the time to reach the top of the pore with the time to cross from the convective upstream towards the convective downstream. If the time to reach the top of the pore is shorter than the crossing time, the formamide molecules are flushed out of the pore. If the time is long enough, the formamide molecules can reach the downstream and accumulate at the bottom of the pore. Analysing the optimal aspect ratio as function of concentration, we find that, at a weight fraction of w = 0 . 5 , a minimal pore height is required for effective accumulation. At the same concentration, the transient calculations show a maximum of the accumulation rate. View Full-Text
Keywords: concentration threshold; hydrothermal vents; origin of life conundrum concentration threshold; hydrothermal vents; origin of life conundrum
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Niether, D.; Wiegand, S. Heuristic Approach to Understanding the Accumulation Process in Hydrothermal Pores. Entropy 2017, 19, 33.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top