Entropy 2014, 16(3), 1426-1461; doi:10.3390/e16031426

Non-Equilibrium Liouville and Wigner Equations: Moment Methods and Long-Time Approximations

Received: 12 December 2013; in revised form: 7 February 2014 / Accepted: 24 February 2014 / Published: 11 March 2014
View Full-Text   |   Download PDF [496 KB, updated 12 March 2014; original version uploaded 11 March 2014]
Abstract: We treat the non-equilibrium evolution of an open one-particle statistical system, subject to a potential and to an external “heat bath” (hb) with negligible dissipation. For the classical equilibrium Boltzmann distribution, Wc,eq, a non-equilibrium three-term hierarchy for moments fulfills Hermiticity, which allows one to justify an approximate long-time thermalization. That gives partial dynamical support to Boltzmann’s Wc,eq, out of the set of classical stationary distributions, Wc;st, also investigated here, for which neither Hermiticity nor that thermalization hold, in general. For closed classical many-particle systems without hb (by using Wc,eq), the long-time approximate thermalization for three-term hierarchies is justified and yields an approximate Lyapunov function and an arrow of time. The largest part of the work treats an open quantum one-particle system through the non-equilibrium Wigner function, W. Weq for a repulsive finite square well is reported. W’s (< 0 in various cases) are assumed to be quasi-definite functionals regarding their dependences on momentum (q). That yields orthogonal polynomials, HQ,n(q), for Weq (and for stationary Wst), non-equilibrium moments, Wn, of W and hierarchies. For the first excited state of the harmonic oscillator, its stationary Wst is a quasi-definite functional, and the orthogonal polynomials and three-term hierarchy are studied. In general, the non-equilibrium quantum hierarchies (associated with Weq) for the Wn’s are not three-term ones. As an illustration, we outline a non-equilibrium four-term hierarchy and its solution in terms of generalized operator continued fractions. Such structures also allow one to formulate long-time approximations, but make it more difficult to justify thermalization. For large thermal and de Broglie wavelengths, the dominant Weq and a non-equilibrium equation for W are reported: the non-equilibrium hierarchy could plausibly be a three-term one and possibly not far from Gaussian, and thermalization could possibly be justified.
Keywords: Liouville and Wigner distributions and non-equilibrium equations; equilibrium solutions and orthogonal polynomials; non-equilibrium moments; long-time approximations; low temperature regime
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |

MDPI and ACS Style

Álvarez-Estrada, R.F. Non-Equilibrium Liouville and Wigner Equations: Moment Methods and Long-Time Approximations. Entropy 2014, 16, 1426-1461.

AMA Style

Álvarez-Estrada RF. Non-Equilibrium Liouville and Wigner Equations: Moment Methods and Long-Time Approximations. Entropy. 2014; 16(3):1426-1461.

Chicago/Turabian Style

Álvarez-Estrada, Ramon F. 2014. "Non-Equilibrium Liouville and Wigner Equations: Moment Methods and Long-Time Approximations." Entropy 16, no. 3: 1426-1461.

Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert