An Estimation of the Entropy for a Double Exponential Distribution Based on Multiply Type-II Censored Samples
Abstract
:1. Introduction
2. Estimation of the Entropy
2.1. Maximum Likelihood Estimation
2.2. Approximate Maximum Likelihood Estimator
Case 1: .
Case 2: .
Case 3: .
2.3. Nonparametric Entropy Estimates
3. Results and Discussion
H2 | V2 | |||||
---|---|---|---|---|---|---|
n | k | aj | MSE(bias) | MSE(bias) | MSE(bias) | MSE(bias) |
10 | 0 | 1∼10 | 0.122(−0.111) | 0.122(−0.111) | 0.400(−0.518) | 0.200(−0.262) |
2 | 1∼8 | 0.095(−0.079) | 0.157(−0.108) | 0.726(−0.749) | 0.315(−0.375) | |
2∼9 | 0.158(−0.252) | 0.162(−0.142) | 0.904(−0.863) | 0.387(−0.467) | ||
20 | 0 | 1∼20 | 0.054(−0.053) | 0.054(−0.053) | 0.157(−0.313) | 0.097(−0.187) |
2 | 1∼18 | 0.043(−0.041) | 0.060(−0.051) | 0.288(−0.472) | 0.159(−0.301) | |
3∼20 | 0.117(−0.237) | 0.060(−0.052) | 0.290(−0.474) | 0.161(−0.302) | ||
2∼19 | 0.068(−0.152) | 0.061(−0.060) | 0.339(−0.523) | 0.183(−0.337) | ||
6 | 4∼17 | 0.105(−0.245) | 0.081(−0.078) | 0.731(−0.804) | 0.385(−0.542) | |
1 2 6∼9 12∼15 17∼20 | 0.058(0.071) | 0.063(0.073) | 0.076(0.108) | 0.118(0.226) | ||
30 | 0 | 1∼30 | 0.036(−0.036) | 0.036(−0.036) | 0.103(−0.252) | 0.065(−0.150) |
2 | 1∼28 | 0.030(−0.030) | 0.039(−0.036) | 0.185(−0.379) | 0.107(−0.248) | |
3∼30 | 0.072(−0.182) | 0.039(−0.037) | 0.187(−0.381) | 0.108(−0.249) | ||
2∼29 | 0.045(−0.114) | 0.039(−0.039) | 0.211(−0.412) | 0.119(−0.270) | ||
6 | 4∼27 | 0.069(−0.197) | 0.046(−0.046) | 0.439(−0.625) | 0.248(−0.441) | |
1 2 6∼9 12∼15 17∼30 | 0.036(−0.009) | 0.044(0.066) | 0.042(−0.026) | 0.048(0.044) | ||
17 | 16∼28 | 0.058(−0.081) | 0.102(−0.111) | 0.477(−0.616) | 0.211(−0.321) | |
50 | 0 | 1∼50 | 0.021(−0.021) | 0.021(−0.021) | 0.064(−0.202) | 0.037(−0.109) |
2 | 1∼48 | 0.019(0.001) | 0.022(−0.012) | 0.074(−0.224) | 0.040(−0.119) | |
2∼49 | 0.025(−0.077) | 0.022(−0.022) | 0.123(−0.314) | 0.065(−0.197) | ||
3∼50 | 0.038(−0.125) | 0.022(−0.021) | 0.112(−0.296) | 0.061(−0.185) | ||
6 | 4∼47 | 0.038(−0.144) | 0.024(−0.024) | 0.246(−0.469) | 0.136(−0.327) | |
1 2 6∼9 12∼15 17∼50 | 0.029(−0.087) | 0.023(0.027) | 0.042(−0.136) | 0.031(−0.068) | ||
27 | 26∼48 | 0.033(−0.047) | 0.049(−0.059) | 0.251(−0.448) | 0.113(−0.239) | |
28 | 4∼15 31∼40 | 0.025(0.019) | 0.087(0.237) | 0.062(−0.130) | 0.053(0.023) |
H4 | V4 | H6 | V6 | |||
---|---|---|---|---|---|---|
n | k | aj | MSE(bias) | MSE(bias) | MSE(bias) | MSE(bias) |
10 | 0 | 1∼10 | 0.486(−0.600) | 0.238(−0.343) | − | 0.217(−0.322) |
2 | 1∼8 | 0.861(−0.838) | 0.331(−0.410) | − | 0.265(−0.324) | |
2∼9 | 1.097(−0.977) | 0.419(−0.512) | − | 0.353(−0.456) | ||
20 | 0 | 1∼20 | 0.143(−0.289) | 0.136(−0.281) | 0.162(−0.311) | 0.168(−0.334) |
2 | 1∼18 | 0.283(−0.467) | 0.208(−0.379) | 0.327(−0.510) | 0.242(−0.422) | |
3∼20 | 0.285(−0.469) | 0.209(−0.380) | 0.330(−0.513) | 0.243(−0.423) | ||
2∼19 | 0.340(−0.525) | 0.236(−0.413) | 0.399(−0.578) | 0.273(−0.457) | ||
6 | 4∼17 | 0.782(−0.838) | 0.438(−0.593) | 0.924(−0.921) | 0.467(−0.617) | |
1 2 6∼9 12∼15 17∼20 | 0.076(0.080) | 0.079(0.141) | 0.073(−0.000) | 0.066(0.093) | ||
30 | 0 | 1∼30 | 0.082(−0.207) | 0.093(−0.234) | 0.081(−0.199) | 0.123(−0.290) |
2 | 1∼28 | 0.159(−0.344) | 0.144(−0.320) | 0.166(−0.351) | 0.178(−0.370) | |
3∼30 | 0.161(−0.347) | 0.145(−0.321) | 0.168(−0.354) | 0.179(−0.371) | ||
2∼29 | 0.186(−0.382) | 0.157(−0.340) | 0.197(−0.394) | 0.193(−0.389) | ||
6 | 4∼27 | 0.418(−0.609) | 0.294(−0.494) | 0.460(−0.643) | 0.333(−0.532) | |
1 2 6∼9 12∼15 17∼30 | 0.042(0.004) | 0.044(−0.049) | 0.046(0.011) | 0.055(−0.113) | ||
17 | 16∼28 | 0.488(−0.628) | 0.219(−0.336) | 0.561(−0.683) | 0.221(−0.333) | |
50 | 0 | 1∼50 | 0.043(−0.145) | 0.053(−0.175) | 0.039(−0.127) | 0.073(−0.224) |
2 | 1∼48 | 0.052(−0.172) | 0.056(−0.180) | 0.049(−0.160) | 0.074(−0.226) | |
2∼49 | 0.094(−0.266) | 0.088(−0.253) | 0.090(−0.259) | 0.112(−0.297) | ||
3∼50 | 0.083(−0.245) | 0.083(−0.242) | 0.078(−0.235) | 0.106(−0.287) | ||
6 | 4∼47 | 0.207(−0.427) | 0.164(−0.372) | 0.208(−0.429) | 0.192(−0.408) | |
1 2 6∼9 12∼15 17∼50 | 0.030(−0.082) | 0.044(−0.143) | 0.026(−0.055) | 0.064(−0.201) | ||
27 | 26∼48 | 0.229(−0.426) | 0.120(−0.259) | 0.247(−0.446) | 0.127(−0.270) | |
28 | 4∼15 31∼40 | 0.043(−0.062) | 0.051(0.094) | 0.042(−0.083) | 0.061(0.159) |
H2 | V2 | H4 | V6 | H6 | V6 | |||
---|---|---|---|---|---|---|---|---|
Complete data : | 2.905 | 2.905 | 2.633 | 2.783 | 2.609 | 2.742 | 2.568 | 2.686 |
Multiply Type-II censored sample : | 2.910 | 3.158 | 2.965 | 3.064 | 2.906 | 3.044 | 2.871 | 3.013 |
4. Conclusions
Acknowledgements
References
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Johnson, N.L.; Kots, S.; Balakrishnan, N. Continuous Univariate Distributions; John Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- Govindarajulu, Z. Best linear estimates under symmetric censoring of the parameters of a double exponential population. J. Am. Stat. Assoc. 1966, 61, 248–258. [Google Scholar]
- Raghunandanan, K.; Srinivasan, R. Simplified estimation of parameters in a double exponential distribution. Technometrics 1971, 13, 689–691. [Google Scholar] [CrossRef]
- Bain, L.J.; Engelhardt, M. Interval estimation for the two-parameter double exponential distribution. Technometrics 1973, 15, 875–887. [Google Scholar] [CrossRef]
- Kappenman, R.F. Conditional confidence intervals for double exponential distribution parameters. Technometrics 1975, 17, 233–235. [Google Scholar] [CrossRef]
- Balakrishnan, N. Approximate MLE of the scale parameter of the Rayleigh distribution with censoring. IEEE Trans. Reliab. 1989, 38, 355–357. [Google Scholar] [CrossRef]
- Balakrishnan, N. On the maximum likelihood estimation of the location and scale parameters of exponential distribution based on multiply Type-II censored samples. J. Appl. Stat. 1990, 17, 55–61. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Balakrishnan, N. Estimation for one-parameter and two-parameter exponential distributions under multiple Type-II censoring. Stat. Paper. 1992, 33, 203–216. [Google Scholar] [CrossRef]
- Kang, S.B. Approximate mle for the scale parameter of the double exponential distribution based on Type-II censored samples. J. Kor. Math. Soc. 1996, 33, 69–79. [Google Scholar]
- Childs, A.; Balakrishnan, N. Conditional inference procedures for the Laplace distribution when the observed samples are progressively censored. Metrika 2000, 52, 253–265. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Kannan, N.; Lin, C.T.; Wu, S.J.S. Inference for the extreme value distribution under progressive Type-II censoring. J. Stat. Comput. Simulat. 2004, 74, 25–45. [Google Scholar] [CrossRef]
- Kang, S.B.; Lee, S.K. AMLEs for the exponential distribution based on multiple Type-II censored samples. The Korean Communications in Statistics 2005, 12, 603–613. [Google Scholar]
- Vasicek, O. A test for normality based on sample entropy. J. Roy. Stat. Soc. B Stat. Meth. 1976, 38, 54–59. [Google Scholar]
- van Es, B. Estimating functionals related to a density by a class of statistics based on spacings. Scand. J. Stat. 1992, 19, 61–72. [Google Scholar]
- Balakrishnan, N.; Nevzorov, V.B. A Primer on Statistical Distribution; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/.)
Share and Cite
Kang, S.-B.; Cho, Y.-S.; Han, J.-T.; Kim, J. An Estimation of the Entropy for a Double Exponential Distribution Based on Multiply Type-II Censored Samples. Entropy 2012, 14, 161-173. https://doi.org/10.3390/e14020161
Kang S-B, Cho Y-S, Han J-T, Kim J. An Estimation of the Entropy for a Double Exponential Distribution Based on Multiply Type-II Censored Samples. Entropy. 2012; 14(2):161-173. https://doi.org/10.3390/e14020161
Chicago/Turabian StyleKang, Suk-Bok, Young-Seuk Cho, Jun-Tae Han, and Jinsoo Kim. 2012. "An Estimation of the Entropy for a Double Exponential Distribution Based on Multiply Type-II Censored Samples" Entropy 14, no. 2: 161-173. https://doi.org/10.3390/e14020161
APA StyleKang, S.-B., Cho, Y.-S., Han, J.-T., & Kim, J. (2012). An Estimation of the Entropy for a Double Exponential Distribution Based on Multiply Type-II Censored Samples. Entropy, 14(2), 161-173. https://doi.org/10.3390/e14020161