9 pages, 1242 KiB  
Communication
Genome-Wide Association Study Confirms Previous Findings of Major Loci Affecting Resistance to Piscine myocarditis virus in Atlantic Salmon (Salmo salar L.)
by Borghild Hillestad, Ólafur H. Kristjánsson, Shokouh Makvandi-Nejad and Hooman K. Moghadam
Genes 2020, 11(6), 608; https://doi.org/10.3390/genes11060608 - 30 May 2020
Cited by 13 | Viewed by 3482
Abstract
Cardiomyopathy syndrome is a viral disease of Atlantic salmon, mostly affecting fish during the late stages of production, resulting in significant losses to the industry. It has been shown that resistance to this disease has a strong genetic component, with quantitative trait loci [...] Read more.
Cardiomyopathy syndrome is a viral disease of Atlantic salmon, mostly affecting fish during the late stages of production, resulting in significant losses to the industry. It has been shown that resistance to this disease has a strong genetic component, with quantitative trait loci (QTL) on chromosomes 27 (Ssa27) and Ssa12 to explain most of the additive genetic variance. Here, by analysing animals from a different year-class and a different population, we further aimed to confirm and narrow down the locations of these QTL. The data support the existence of the two QTL and suggest that the causative mutation on Ssa27 is most likely within the 10–10.5 Mbp segment of this chromosome. This region contains a cluster of major histocompatibility complex class I (MHC I) genes with the most strongly associated marker mapped to one of these loci. On Ssa12, the data confirmed the previous finding that the location of the causative mutation is within the 61.3 to 61.7 Mbp region. This segment contains several immune-related genes, but of particular interest are genes related to MHC II. Together, these findings highlight the likely key role of MHC genes in Atlantic salmon following infection with Piscine myocarditis virus (PMCV) and their potential impact on influencing the trajectory of this disease. Full article
(This article belongs to the Special Issue Genetics and Genomics of Salmonid Fishes)
Show Figures

Figure 1

9 pages, 412 KiB  
Article
Unusual mtDNA Control Region Length Heteroplasmy in the COS-7 Cell Line
by Nataliya Kozhukhar, Sunil Mitta and Mikhail F. Alexeyev
Genes 2020, 11(6), 607; https://doi.org/10.3390/genes11060607 - 30 May 2020
Cited by 1 | Viewed by 2704
Abstract
The COS-7 cell line is a workhorse of virology research. To expand this cell line’s utility and to enable studies on mitochondrial DNA (mtDNA) transcription and replication, we determined the complete nucleotide sequence of its mitochondrial genome by Sanger sequencing. In contrast to [...] Read more.
The COS-7 cell line is a workhorse of virology research. To expand this cell line’s utility and to enable studies on mitochondrial DNA (mtDNA) transcription and replication, we determined the complete nucleotide sequence of its mitochondrial genome by Sanger sequencing. In contrast to other available mtDNA sequences from Chlorocebus aethiops, the mtDNA of the COS-7 cell line was found to contain a variable number of perfect copies of a 108 bp unit tandemly repeated in the control region. We established that COS-7 cells are heteroplasmic with at least two variants being present: with four and five repeat units. The analysis of the mitochondrial genome sequences from other primates revealed that tandem repeats are absent from examined mtDNA control regions of humans and great apes, but appear in lower primates, where they are present in a homoplasmic state. To our knowledge, this is the first report of mtDNA length heteroplasmy in primates. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1404 KiB  
Article
An Independent Locus Upstream of ASIP Controls Variation in the Shade of the Bay Coat Colour in Horses
by Laura J. Corbin, Jessica Pope, Jacqueline Sanson, Douglas F. Antczak, Donald Miller, Raheleh Sadeghi and Samantha A. Brooks
Genes 2020, 11(6), 606; https://doi.org/10.3390/genes11060606 - 30 May 2020
Cited by 18 | Viewed by 6927
Abstract
Novel coat colour phenotypes often emerge during domestication, and there is strong evidence of genetic selection for the two main genes that control base coat colour in horses—ASIP and MC1R. These genes direct the type of pigment produced, red pheomelanin ( [...] Read more.
Novel coat colour phenotypes often emerge during domestication, and there is strong evidence of genetic selection for the two main genes that control base coat colour in horses—ASIP and MC1R. These genes direct the type of pigment produced, red pheomelanin (MC1R) or black eumelanin (ASIP), as well as the relative concentration and the temporal–spatial distribution of melanin pigment deposits in the skin and hair coat. Here, we describe a genome-wide association study (GWAS) to identify novel genic regions involved in the determination of the shade of bay. In total, 126 horses from five different breeds were ranked according to the extent of the distribution of eumelanin: spanning variation in phenotype from black colour restricted only to the extremities to the presence of some black pigment across nearly all the body surface. We identified a single region associated with the shade of bay ranking spanning approximately 0.5 MB on ECA22, just upstream of the ASIP gene (p = 9.76 × 10−15). This candidate region encompasses the distal 5′ end of the ASIP transcript (as predicted from other species) as well as the RALY gene. Both loci are viable candidates based on the presence of similar alleles in other species. These results contribute to the growing understanding of coat colour genetics in the horse and to the mapping of genetic determinants of pigmentation on a molecular level. Given pleiotropic phenotypes in behaviour and obesity for ASIP alleles, especially those in the 5′ regulatory region, improved understanding of this new Shade allele may have implications for health management in the horse. Full article
(This article belongs to the Special Issue Coat Color Genetics)
Show Figures

Figure 1

14 pages, 1300 KiB  
Article
Evolutionary Analysis of Infectious Bronchitis Virus Reveals Marked Genetic Diversity and Recombination Events
by Mohammed A. Rohaim, Rania F. El Naggar, Mohammed A. Abdelsabour, Mahmoud H. A. Mohamed, Ibrahim M. El-Sabagh and Muhammad Munir
Genes 2020, 11(6), 605; https://doi.org/10.3390/genes11060605 - 29 May 2020
Cited by 38 | Viewed by 7323
Abstract
In the last 5 years, frequent outbreaks of infectious bronchitis virus (IBV) are observed in both broiler and layer chicken flocks in the Kingdom of Saudi Arabia (KSA) in spite of extensive usage of vaccines. The IBV is a widespread avian coronavirus affecting [...] Read more.
In the last 5 years, frequent outbreaks of infectious bronchitis virus (IBV) are observed in both broiler and layer chicken flocks in the Kingdom of Saudi Arabia (KSA) in spite of extensive usage of vaccines. The IBV is a widespread avian coronavirus affecting both vaccinated and unvaccinated chicken flocks and is attributed to significant economic losses, around the globe. In the present study, 58 (n = 58) samples were collected from four different commercial poultry flocks from 8 KSA districts during 2019. A total of nine positive isolates (9/58; 15.5%), based on real-time reverse transcriptase PCR targeting nucleocapsid (N) gene, were used for further genetic characterization and evolutionary analysis. Genetic characterization of the partial spike (S1) gene revealed the clustering of the reported isolates into three different genotypes, whereas four additional isolates were grouped within 4/91 genotype, two isolates within IS/885 genotype, one isolate was closely related to IS/1494/06, and two isolates were grouped within classic serotype (vaccine-like strains). Phylodynamic revealed clustering of four isolated viruses within GI-13 lineage, three isolates within GI-23 lineage, and two isolates within GI-1 lineage. Results indicate that there are high evolutionary distances between the newly identified IBV strains in this study and the commercially used vaccines (GI-1), suggesting that IBV strains circulating in the KSA are under constant evolutionary pressures. Selective pressure biostatistics analyses consistently demonstrate the presence of a higher positive score which highlights the role of natural selection, a mechanism of virus evolution on sites located on the protein surface, within or nearby domains involved in viral attachment or related functions. Recombination analysis revealed emergence of two isolates through recombination events resulting in new recombinant viruses. Taken together, these finding demonstrate the genetic and evolutionary insights into the currently circulating IBV genotypes in KSA, which could help to better understand the origin, spread, and evolution of infectious bronchitis viruses, and to ascertain the importance of disease monitoring as well as re-evaluation for the currently used vaccines and vaccination programs. Full article
(This article belongs to the Special Issue Microbial Genomics and Evolution)
Show Figures

Figure 1

13 pages, 3192 KiB  
Article
Identification of the Ovine Keratin-Associated Protein 2-1 Gene and Its Sequence Variation in Four Chinese Sheep Breeds
by Jianqing Wang, Huitong Zhou, Jon G. H. Hickford, Yuzhu Luo, Hua Gong, Jiang Hu, Xiu Liu, Shaobin Li, Yize Song, Na Ke, Lirong Qiao and Jiqing Wang
Genes 2020, 11(6), 604; https://doi.org/10.3390/genes11060604 - 29 May 2020
Cited by 6 | Viewed by 2481
Abstract
Keratin-associated proteins are important components of wool fibers. The gene encoding the high-sulfur keratin-associated protein 2-1 has been described in humans, but it has not been described in sheep. A basic local alignment search tool nucleotide search of the Ovine Genome Assembly version [...] Read more.
Keratin-associated proteins are important components of wool fibers. The gene encoding the high-sulfur keratin-associated protein 2-1 has been described in humans, but it has not been described in sheep. A basic local alignment search tool nucleotide search of the Ovine Genome Assembly version 4.0 using a human keratin-associated protein 2-1 gene sequence revealed a 399-base pair open reading frame, which was clustered among nine previously identified keratin-associated protein genes on chromosome 11. Polymerase chain reaction–single strand conformation polymorphism analysis revealed four different banding patterns, with these representing four different sequences (A–D) in Chinese sheep breeds. These sequences had the highest similarity to human keratin-associated protein 2-1 gene, suggesting that they represent variants of ovine keratin-associated protein 2-1 gene. Nine single nucleotide variations were detected in the gene, including one non-synonymous nucleotide substitution. Differences in variant frequencies between fine-wool sheep breeds and coarse-wool sheep breeds were detected. The gene was found to be expressed in various tissues, with the highest expression level in skin, and moderate expression levels in heart and lung tissue. These results reveal that the ovine keratin-associated protein 2-1 gene is variable and suggest the gene might affect variation in mean fiber diameter. Full article
(This article belongs to the Special Issue Complex Genetic Loci, 2nd Edition)
Show Figures

Figure 1

17 pages, 7820 KiB  
Article
Human Nasal Epithelial Organoids for Therapeutic Development in Cystic Fibrosis
by Zhongyu Liu, Justin D. Anderson, Lily Deng, Stephen Mackay, Johnathan Bailey, Latona Kersh, Steven M. Rowe and Jennifer S. Guimbellot
Genes 2020, 11(6), 603; https://doi.org/10.3390/genes11060603 - 29 May 2020
Cited by 46 | Viewed by 6968
Abstract
We describe a human nasal epithelial (HNE) organoid model derived directly from patient samples that is well-differentiated and recapitulates the airway epithelium, including the expression of cilia, mucins, tight junctions, the cystic fibrosis transmembrane conductance regulator (CFTR), and ionocytes. This model requires few [...] Read more.
We describe a human nasal epithelial (HNE) organoid model derived directly from patient samples that is well-differentiated and recapitulates the airway epithelium, including the expression of cilia, mucins, tight junctions, the cystic fibrosis transmembrane conductance regulator (CFTR), and ionocytes. This model requires few cells compared to airway epithelial monolayer cultures, with multiple outcome measurements depending on the application. A novel feature of the model is the predictive capacity of lumen formation, a marker of baseline CFTR function that correlates with short-circuit current activation of CFTR in monolayers and discriminates the cystic fibrosis (CF) phenotype from non-CF. Our HNE organoid model is amenable to automated measurements of forskolin-induced swelling (FIS), which distinguishes levels of CFTR activity. While the apical side is not easily accessible, RNA- and DNA-based therapies intended for systemic administration could be evaluated in vitro, or it could be used as an ex vivo biomarker of successful repair of a mutant gene. In conclusion, this highly differentiated airway epithelial model could serve as a surrogate biomarker to assess correction of the mutant gene in CF or other diseases, recapitulating the phenotypic and genotypic diversity of the population. Full article
(This article belongs to the Special Issue Molecular Basis and Gene Therapies of Cystic Fibrosis)
Show Figures

Figure 1

35 pages, 959 KiB  
Review
Preimplantation Genetic Testing for Chromosomal Abnormalities: Aneuploidy, Mosaicism, and Structural Rearrangements
by Manuel Viotti
Genes 2020, 11(6), 602; https://doi.org/10.3390/genes11060602 - 29 May 2020
Cited by 105 | Viewed by 15816
Abstract
There is a high incidence of chromosomal abnormalities in early human embryos, whether they are generated by natural conception or by assisted reproductive technologies (ART). Cells with chromosomal copy number deviations or chromosome structural rearrangements can compromise the viability of embryos; much of [...] Read more.
There is a high incidence of chromosomal abnormalities in early human embryos, whether they are generated by natural conception or by assisted reproductive technologies (ART). Cells with chromosomal copy number deviations or chromosome structural rearrangements can compromise the viability of embryos; much of the naturally low human fecundity as well as low success rates of ART can be ascribed to these cytogenetic defects. Chromosomal anomalies are also responsible for a large proportion of miscarriages and congenital disorders. There is therefore tremendous value in methods that identify embryos containing chromosomal abnormalities before intrauterine transfer to a patient being treated for infertility—the goal being the exclusion of affected embryos in order to improve clinical outcomes. This is the rationale behind preimplantation genetic testing for aneuploidy (PGT-A) and structural rearrangements (-SR). Contemporary methods are capable of much more than detecting whole chromosome abnormalities (e.g., monosomy/trisomy). Technical enhancements and increased resolution and sensitivity permit the identification of chromosomal mosaicism (embryos containing a mix of normal and abnormal cells), as well as the detection of sub-chromosomal abnormalities such as segmental deletions and duplications. Earlier approaches to screening for chromosomal abnormalities yielded a binary result of normal versus abnormal, but the new refinements in the system call for new categories, each with specific clinical outcomes and nuances for clinical management. This review intends to give an overview of PGT-A and -SR, emphasizing recent advances and areas of active development. Full article
(This article belongs to the Special Issue EmbryoGenetics)
Show Figures

Figure 1

14 pages, 4566 KiB  
Article
A Novel Mechanism of bta-miR-210 in Bovine Early Intramuscular Adipogenesis
by Ling Ren, Qian Li, Xin Hu, Qiyuan Yang, Min Du, Yishen Xing, Yahui Wang, Junya Li and Lupei Zhang
Genes 2020, 11(6), 601; https://doi.org/10.3390/genes11060601 - 29 May 2020
Cited by 9 | Viewed by 3643
Abstract
Intramuscular fat (IMF) is one of the major factors determining beef quality. IMF formation is influenced by multiple conditions including genetic background, age and nutrition. In our previous investigation, bta-miR-210 was found to be increased during adipogenesis using miRNA-seq. In this study, we [...] Read more.
Intramuscular fat (IMF) is one of the major factors determining beef quality. IMF formation is influenced by multiple conditions including genetic background, age and nutrition. In our previous investigation, bta-miR-210 was found to be increased during adipogenesis using miRNA-seq. In this study, we validated the upregulation of bta-miR-210 in platelet-derived growth factor receptor α positive (PDGFRα+) progenitor cells during adipogenic differentiation in vitro. To investigate its role in adipogenesis, bta-miR-210 mimics were introduced into progenitor cells, which resulted in enhanced intracellular lipid accumulation. Accordingly, the expression of adipocyte-specific genes significantly increased in the bta-miR-210 mimic group compared to that in the negative control group (p < 0.01). Dual-luciferase reporter assays revealed that WISP2 is a target of bta-miR-210. WISP2 knockdown enhanced adipogenesis. In conclusion, bta-miR-210 positively regulates the adipogenesis of PDGFRα+ cells derived from bovine fetal muscle by targeting WISP2. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

20 pages, 2277 KiB  
Article
Identification of Molecular Mechanisms Related to Pig Fatness at the Transcriptome and miRNAome Levels
by Katarzyna Ropka-Molik, Klaudia Pawlina-Tyszko, Kacper Żukowski, Mirosław Tyra, Natalia Derebecka, Joanna Wesoły, Tomasz Szmatoła and Katarzyna Piórkowska
Genes 2020, 11(6), 600; https://doi.org/10.3390/genes11060600 - 29 May 2020
Cited by 12 | Viewed by 4282
Abstract
Fat deposition and growth rate are closely related to pork quality and fattening efficiency. The next-generation sequencing (NGS) approach for transcriptome and miRNAome massive parallel sequencing of adipocyte tissue was applied to search for a molecular network related to fat deposition in pigs. [...] Read more.
Fat deposition and growth rate are closely related to pork quality and fattening efficiency. The next-generation sequencing (NGS) approach for transcriptome and miRNAome massive parallel sequencing of adipocyte tissue was applied to search for a molecular network related to fat deposition in pigs. Pigs were represented by three breeds (Large White, Pietrain, and Hampshire) that varied in fat content within each breed. The obtained results allowed for the detection of significant enrichment of Gene Ontology (GO) terms and pathways associated directly and indirectly with fat deposition via regulation of fatty acid metabolism, fat cell differentiation, inflammatory response, and extracellular matrix (ECM) organization and disassembly. Moreover, the results showed that adipocyte tissue content strongly affected the expression of leptin and other genes related to a response to excessive feed intake. The findings indicated that modification of genes and miRNAs involved in ECM rearrangements can be essential during fat tissue growth and development in pigs. The identified molecular network within genes and miRNAs that were deregulated depending on the subcutaneous fat level are proposed as candidate factors determining adipogenesis, fatness, and selected fattening characteristics in pigs. Full article
(This article belongs to the Special Issue Pig Genomics and Genetics)
Show Figures

Graphical abstract

11 pages, 2956 KiB  
Article
Genome-Wide Diversity, Population Structure and Demographic History of Dromedaries in the Central Desert of Iran
by Morteza Bitaraf Sani, Javad Zare Harofte, Ahmad Bitaraf, Saeid Esmaeilkhanian, Mohammad Hossein Banabazi, Nader Salim, Abbas Teimoori, Ali Shafei Naderi, Mohammad Ali Faghihi, Pamela Anna Burger, Mohammad Silawi and Afsaneh Taghipour Sheshdeh
Genes 2020, 11(6), 599; https://doi.org/10.3390/genes11060599 - 29 May 2020
Cited by 7 | Viewed by 4055
Abstract
The development of camel husbandry for good production in a desert climate is very important, thus we need to understand the genetic basis of camels and give attention to genomic analysis. We assessed genome-wide diversity, linkage disequilibrium (LD), effective population size (Ne) and [...] Read more.
The development of camel husbandry for good production in a desert climate is very important, thus we need to understand the genetic basis of camels and give attention to genomic analysis. We assessed genome-wide diversity, linkage disequilibrium (LD), effective population size (Ne) and relatedness in 96 dromedaries originating from five different regions of the central desert of Iran using genotyping-by-sequencing (GBS). A total of 14,522 Single Nucleotide Polymorphisms (SNPs) with an average minor allele frequency (MAF) of 0.19 passed quality control and filtering steps. The average observed heterozygosity in the population was estimated at 0.25 ± 0.03. The mean of LD at distances shorter than 40 kb was low (r2 = 0.089 ± 0.234). The camels sampled from the central desert of Iran exhibited higher relatedness than Sudanese and lower than Arabian Peninsula dromedaries. Recent Ne of Iran’s camels was estimated to be 89. Predicted Tajima’s D (1.28) suggested a bottleneck or balancing selection in dromedary camels in the central desert of Iran. A general decrease in effective and census population size poses a threat for Iran’s dromedaries. This report is the first SNP calling report on nearly the chromosome level and a first step towards understanding genomic diversity, population structure and demography in Iranian dromedaries. Full article
(This article belongs to the Special Issue Camelid Genomics)
Show Figures

Figure 1

19 pages, 1092 KiB  
Article
VviUCC1 Nucleotide Diversity, Linkage Disequilibrium and Association with Rachis Architecture Traits in Grapevine
by Javier Tello, Rafael Torres-Pérez, Timothée Flutre, Jérôme Grimplet and Javier Ibáñez
Genes 2020, 11(6), 598; https://doi.org/10.3390/genes11060598 - 29 May 2020
Cited by 10 | Viewed by 3621
Abstract
Cluster compactness is a trait with high agronomic relevance, affecting crop yield and grape composition. Rachis architecture is a major component of cluster compactness determinism, and is a target trait toward the breeding of grapevine varieties less susceptible to pests and diseases. Although [...] Read more.
Cluster compactness is a trait with high agronomic relevance, affecting crop yield and grape composition. Rachis architecture is a major component of cluster compactness determinism, and is a target trait toward the breeding of grapevine varieties less susceptible to pests and diseases. Although its genetic basis is scarcely understood, a preliminary result indicated a possible involvement of the VviUCC1 gene. The aim of this study was to characterize the VviUCC1 gene in grapevine and to test the association between the natural variation observed for a series of rachis architecture traits and the polymorphisms detected in the VviUCC1 sequence. This gene encodes an uclacyanin plant-specific cell-wall protein involved in fiber formation and/or lignification processes. A high nucleotide diversity in the VviUCC1 gene promoter and coding regions was observed, but no critical effects were predicted in the protein domains, indicating a high level of conservation of its function in the cultivated grapevine. After correcting statistical models for genetic stratification and linkage disequilibrium effects, marker-trait association results revealed a series of single nucleotide polymorphisms (SNPs) significantly associated with cluster compactness and rachis traits variation. Two of them (Y-984 and K-88) affected two common cis-transcriptional regulatory elements, suggesting an effect on phenotype via gene expression regulation. This work reinforces the interest of further studies aiming to reveal the functional effect of the detected VviUCC1 variants on grapevine rachis architecture. Full article
(This article belongs to the Special Issue Genetics and Diversity of Grapevine)
Show Figures

Figure 1

9 pages, 1666 KiB  
Article
Duplication in ECR near HMX1 and a SNP in GATA6 Genes Regulate Microtia in Awassi Sheep
by Khaleel I. Z. Jawasreh and Haitham Daif-Allah Al-Omari
Genes 2020, 11(6), 597; https://doi.org/10.3390/genes11060597 - 28 May 2020
Cited by 9 | Viewed by 2869
Abstract
Microtia and anotia are hereditary traits characterized by an underdevelopment or complete absence of the outer ear. These congenital malformations observed in many species can exist as part of various syndromes or as an isolated trait as seen in the fat-tailed Awassi sheep [...] Read more.
Microtia and anotia are hereditary traits characterized by an underdevelopment or complete absence of the outer ear. These congenital malformations observed in many species can exist as part of various syndromes or as an isolated trait as seen in the fat-tailed Awassi sheep breed. Our study aims to identify the genetic mutations causing microtia in Awassi sheep by DNA sequencing. DNA was extracted from blood samples randomly collected from 84 Awassi sheep (16 earless, 41 short ear and 27 normal ear) across different farms. GATA6 exons 1, 2, 4, 6 and 7, CLRN1 intron 3, DCC intron 2, ECR near HMX1 and the intergenic region between GATA6 and MIB1 genes were screened, amplified and sequenced. Allele and genotype frequencies were calculated by direct counting. Association was performed using chi-squared test for goodness-of-fit. Results showed mutations in only two genes significantly associated with microtia in Awassi: duplication in part of ECR near HMX1 (6:114293121-6:114293196) and a SNP at GATA6 exon 7 (23:34498242). Association results revealed that the ECR locus accounts for the microtia phenotype, while GATA6 exon 7 acts as a modifier gene. Genetic screening for these loci can be used to improve selection against microtia in Awassi sheep. Full article
(This article belongs to the Special Issue Genetics and Genomics Applied to Livestock Production)
Show Figures

Figure 1

9 pages, 1462 KiB  
Case Report
Pitt-Hopkins Syndrome: Clinical and Molecular Findings of a 5-Year-Old Patient
by Florin Tripon, Alina Bogliș, Cristian Micheu, Ioana Streață and Claudia Bănescu
Genes 2020, 11(6), 596; https://doi.org/10.3390/genes11060596 - 28 May 2020
Cited by 7 | Viewed by 6926
Abstract
Pitt Hopkins syndrome (PTHS) is a very rare condition and until now, approximately 500 patients were reported worldwide, of which not all are genetically confirmed. Usually, individuals with variants affecting exons 1 to 5 in the TCF4 gene associate mild intellectual disability (ID), [...] Read more.
Pitt Hopkins syndrome (PTHS) is a very rare condition and until now, approximately 500 patients were reported worldwide, of which not all are genetically confirmed. Usually, individuals with variants affecting exons 1 to 5 in the TCF4 gene associate mild intellectual disability (ID), between exons 5 to 8, moderate to severe ID and sometimes have some of the characteristics of PTHS, and variants starting from exon 9 to exon 20 associate a typical PTHS phenotype. In this report, we describe the clinical and molecular findings of a Caucasian boy diagnosed with PTHS. PTHS phenotype is described including craniofacial dysmorphism with brachycephaly, biparietal narrowing, wide nasal bridge, thin and linear lateral eyebrows, palpebral edema, full cheeks, short philtrum, wide mouth with prominent and everted lips, prominent Cupid’s bow, downturned corners of the mouth, microdontia and also the clinical management of the patient. The previously and the current diagnosis scores are described in this report and also the challenges and their benefits for an accurate and early diagnosis. Full article
(This article belongs to the Special Issue Molecular Genetics of Facial Traits and Malformations)
Show Figures

Figure 1

26 pages, 2245 KiB  
Review
Epigenetic Factors that Control Pericentric Heterochromatin Organization in Mammals
by Salvatore Fioriniello, Domenico Marano, Francesca Fiorillo, Maurizio D’Esposito and Floriana Della Ragione
Genes 2020, 11(6), 595; https://doi.org/10.3390/genes11060595 - 28 May 2020
Cited by 26 | Viewed by 6916
Abstract
Pericentric heterochromatin (PCH) is a particular form of constitutive heterochromatin that is localized to both sides of centromeres and that forms silent compartments enriched in repressive marks. These genomic regions contain species-specific repetitive satellite DNA that differs in terms of nucleotide sequences and [...] Read more.
Pericentric heterochromatin (PCH) is a particular form of constitutive heterochromatin that is localized to both sides of centromeres and that forms silent compartments enriched in repressive marks. These genomic regions contain species-specific repetitive satellite DNA that differs in terms of nucleotide sequences and repeat lengths. In spite of this sequence diversity, PCH is involved in many biological phenomena that are conserved among species, including centromere function, the preservation of genome integrity, the suppression of spurious recombination during meiosis, and the organization of genomic silent compartments in the nucleus. PCH organization and maintenance of its repressive state is tightly regulated by a plethora of factors, including enzymes (e.g., DNA methyltransferases, histone deacetylases, and histone methyltransferases), DNA and histone methylation binding factors (e.g., MECP2 and HP1), chromatin remodeling proteins (e.g., ATRX and DAXX), and non-coding RNAs. This evidence helps us to understand how PCH organization is crucial for genome integrity. It then follows that alterations to the molecular signature of PCH might contribute to the onset of many genetic pathologies and to cancer progression. Here, we describe the most recent updates on the molecular mechanisms known to underlie PCH organization and function. Full article
(This article belongs to the Special Issue DNA Methylation in Health and Diseases)
Show Figures

Figure 1

15 pages, 605 KiB  
Article
Association of NUDT15 c.415C>T and FPGS 2572C>T Variants with the Risk of Early Hematologic Toxicity During 6-MP and Low-Dose Methotrexate-Based Maintenance Therapy in Indian Patients with Acute Lymphoblastic Leukemia
by Sunitha Kodidela, Patchava Dorababu, Dimpal N. Thakkar, Biswajit Dubashi, Rajan Sundaram, Niveditha Muralidharan, Ravi Prasad Nidanapu, Anil Aribandi, Suresh Chandra Pradhan and Chakradhara Rao Satyanarayana Uppugunduri
Genes 2020, 11(6), 594; https://doi.org/10.3390/genes11060594 - 28 May 2020
Cited by 17 | Viewed by 4054
Abstract
Genetic variants influencing the pharmacokinetics and/or pharmacodynamics of the chemotherapeutic drugs used in Acute Lymphoblastic Leukemia (ALL) therapy often contribute to the occurrence of treatment related toxicity (TRT). In this study, we explored the association of candidate genetic variants with early hematological TRT [...] Read more.
Genetic variants influencing the pharmacokinetics and/or pharmacodynamics of the chemotherapeutic drugs used in Acute Lymphoblastic Leukemia (ALL) therapy often contribute to the occurrence of treatment related toxicity (TRT). In this study, we explored the association of candidate genetic variants with early hematological TRT (grade 3–4) occurring within the first 100 days of low-dose methotrexate and 6-mercaptopurine based maintenance therapy (n = 73). Fourteen variants in the following candidate genes were genotyped using allele discrimination assay by real-time PCR: ABCB1, DHFR, GGH, FPGS, MTHFR, RFC1, SLCO1B1, TPMT, and NUDT15. Methotrexate polyglutamate (MTXPG3-5) levels in red blood cells were measured by LC-MS/MS. Early hematological TRT (grade 3–4) was seen in 54.9% of patients. The NUDT15c.415T allele was associated with early TRT occurrence [HR: 3.04 (95% CI: 1.5–6.1); p = 0.007]. Sensitivity of early TRT prediction improved (from 30.7% to 89.7%) by considering FPGS variant (rs1544105’T’) carrier status along with NUDT15c.415T allele [HR = 2.7 (1.5–4.7, p = 0.008)]. None of the considered genetic variants were associated with MTXPG3-5 levels, which in turn were not associated with early TRT. NUDT15c.415T allele carrier status could be used as a stratifying marker for Indian ALL patients to distinguish patients at high or low risk of developing early hematological TRT. Full article
Show Figures

Figure 1