21 pages, 4606 KiB  
Article
Insights into the Safety and Versatility of 4D Printed Intravesical Drug Delivery Systems
by Marco Uboldi, Cristiana Perrotta, Claudia Moscheni, Silvia Zecchini, Alessandra Napoli, Chiara Castiglioni, Andrea Gazzaniga, Alice Melocchi and Lucia Zema
Pharmaceutics 2023, 15(3), 757; https://doi.org/10.3390/pharmaceutics15030757 - 24 Feb 2023
Cited by 18 | Viewed by 2488
Abstract
This paper focuses on recent advancements in the development of 4D printed drug delivery systems (DDSs) for the intravesical administration of drugs. By coupling the effectiveness of local treatments with major compliance and long-lasting performance, they would represent a promising innovation for the [...] Read more.
This paper focuses on recent advancements in the development of 4D printed drug delivery systems (DDSs) for the intravesical administration of drugs. By coupling the effectiveness of local treatments with major compliance and long-lasting performance, they would represent a promising innovation for the current treatment of bladder pathologies. Being based on a shape-memory pharmaceutical-grade polyvinyl alcohol (PVA), these DDSs are manufactured in a bulky shape, can be programmed to take on a collapsed one suitable for insertion into a catheter and re-expand inside the target organ, following exposure to biological fluids at body temperature, while releasing their content. The biocompatibility of prototypes made of PVAs of different molecular weight, either uncoated or coated with Eudragit®-based formulations, was assessed by excluding relevant in vitro toxicity and inflammatory response using bladder cancer and human monocytic cell lines. Moreover, the feasibility of a novel configuration was preliminarily investigated, targeting the development of prototypes provided with inner reservoirs to be filled with different drug-containing formulations. Samples entailing two cavities, filled during the printing process, were successfully fabricated and showed, in simulated urine at body temperature, potential for controlled release, while maintaining the ability to recover about 70% of their original shape within 3 min. Full article
(This article belongs to the Special Issue Local Drug Delivery System)
Show Figures

Graphical abstract

15 pages, 7470 KiB  
Article
Formation of Hydrophilic Nanofibers from Nanostructural Design in the Co-Encapsulation of Celecoxib through Electrospinning
by Kedi Chu, Yi Zhu, Geng Lu, Sa Huang, Chuangzan Yang, Juying Zheng, Junming Chen, Junfeng Ban, Huanhuan Jia and Zhufen Lu
Pharmaceutics 2023, 15(3), 730; https://doi.org/10.3390/pharmaceutics15030730 - 22 Feb 2023
Cited by 5 | Viewed by 2486
Abstract
This study presents a method for a one-step co-encapsulation of PLGA nanoparticles in hydrophilic nanofibers. The aim is to effectively deliver the drug to the lesion site and achieve a longer release time. The celecoxib nanofiber membrane (Cel-NPs-NFs) was prepared by emulsion solvent [...] Read more.
This study presents a method for a one-step co-encapsulation of PLGA nanoparticles in hydrophilic nanofibers. The aim is to effectively deliver the drug to the lesion site and achieve a longer release time. The celecoxib nanofiber membrane (Cel-NPs-NFs) was prepared by emulsion solvent evaporation and electrospinning with celecoxib as a model drug. By this method, nanodroplets of celecoxib PLGA are entrapped within polymer nanofibers during an electrospinning process. Moreover, Cel-NPs-NFs exhibited good mechanical strength and hydrophilicity, with a cumulative release of 67.74% for seven days, and the cell uptake at 0.5 h was 2.7 times higher than that of pure nanoparticles. Furthermore, pathological sections of the joint exhibited an apparent therapeutic effect on rat OA, and the drug was delivered effectively. According to the results, this solid matrix containing nanodroplets or nanoparticles could use hydrophilic materials as carriers to prolong drug release time. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

12 pages, 2896 KiB  
Article
Real-Time Monitoring of Colorectal Cancer Location and Lymph Node Metastasis and Photodynamic Therapy Using Fucoidan-Based Therapeutic Nanogel and Near-Infrared Fluorescence Diagnostic–Therapy System
by Yoo-kyoung Shin, You-rim Park, Hyeri Lee, Yongdoo Choi and Joo Beom Eom
Pharmaceutics 2023, 15(3), 930; https://doi.org/10.3390/pharmaceutics15030930 - 13 Mar 2023
Cited by 12 | Viewed by 2484
Abstract
We report real-time monitoring of colorectal cancer, lymph node metastasis of colorectal cancer cells, and tumor growth inhibition through photodynamic therapy (PDT) using a near-infrared fluorescence diagnostic–therapy system with a light source for PDT and a fucoidan-based theranostic nanogel (CFN-gel) with good accumulation [...] Read more.
We report real-time monitoring of colorectal cancer, lymph node metastasis of colorectal cancer cells, and tumor growth inhibition through photodynamic therapy (PDT) using a near-infrared fluorescence diagnostic–therapy system with a light source for PDT and a fucoidan-based theranostic nanogel (CFN-gel) with good accumulation efficiency in cancer cells. To confirm the effect of the fabricated system and developed CFN-gel, in vitro and in vivo experiments were performed. Chlorin e6 (Ce6) and 5-aminolevulinic acid (5-ALA) were used for comparison. We confirmed that CFN-gel has a high accumulation efficiency in cancer cells and high fluorescence signals in near-infrared light for a long period, and only CFN-gel delayed the growth rate of cancer in terms of its size in PDT. In addition, using the near-infrared fluorescence diagnostic–therapy system and CFN-gel prepared for these experiments, the lymph node metastasis of cancer cells was imaged in real time, and the metastasis was confirmed through H&E staining. The possibility of image-guided surgery and identification of lymph node metastasis in colorectal cancer can be confirmed through CFN-gel and a near-infrared fluorescence diagnostic–therapy system that includes various light sources. Full article
(This article belongs to the Special Issue Recent Advances in Anticancer Photodynamic Therapy)
Show Figures

Figure 1

19 pages, 2784 KiB  
Article
CuMV VLPs Containing the RBM from SARS-CoV-2 Spike Protein Drive Dendritic Cell Activation and Th1 Polarization
by Ana Isabel Sebastião, Daniela Mateus, Mylène A. Carrascal, Cátia Sousa, Luísa Cortes, Martin F. Bachmann, Anália do Carmo, Ana Miguel Matos, Maria Goreti F. Sales and Maria Teresa Cruz
Pharmaceutics 2023, 15(3), 825; https://doi.org/10.3390/pharmaceutics15030825 - 2 Mar 2023
Cited by 6 | Viewed by 2484
Abstract
Dendritic cells (DCs) are the most specialized and proficient antigen-presenting cells. They bridge innate and adaptive immunity and display a powerful capacity to prime antigen-specific T cells. The interaction of DCs with the receptor-binding domain of the spike (S) protein from the severe [...] Read more.
Dendritic cells (DCs) are the most specialized and proficient antigen-presenting cells. They bridge innate and adaptive immunity and display a powerful capacity to prime antigen-specific T cells. The interaction of DCs with the receptor-binding domain of the spike (S) protein from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pivotal step to induce effective immunity against the S protein-based vaccination protocols, as well as the SARS-CoV-2 virus. Herein, we describe the cellular and molecular events triggered by virus-like particles (VLPs) containing the receptor-binding motif from the SARS-CoV-2 spike protein in human monocyte-derived dendritic cells, or, as controls, in the presence of the Toll-like receptors (TLR)3 and TLR7/8 agonists, comprehending the events of dendritic cell maturation and their crosstalk with T cells. The results demonstrated that VLPs boosted the expression of major histocompatibility complex molecules and co-stimulatory receptors of DCs, indicating their maturation. Furthermore, DCs’ interaction with VLPs promoted the activation of the NF-kB pathway, a very important intracellular signalling pathway responsible for triggering the expression and secretion of proinflammatory cytokines. Additionally, co-culture of DCs with T cells triggered CD4+ (mainly CD4+Tbet+) and CD8+ T cell proliferation. Our results suggested that VLPs increase cellular immunity, involving DC maturation and T cell polarization towards a type 1 T cells profile. By providing deeper insight into the mechanisms of activation and regulation of the immune system by DCs, these findings will enable the design of effective vaccines against SARS-CoV-2. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

16 pages, 4570 KiB  
Article
Cataleptogenic Effect of Haloperidol Formulated in Water-Soluble Calixarene-Based Nanoparticles
by Nadezda E. Kashapova, Ruslan R. Kashapov, Albina Y. Ziganshina, Dmitry O. Nikitin, Irina I. Semina, Vadim V. Salnikov, Vitaliy V. Khutoryanskiy, Rouslan I. Moustafine and Lucia Y. Zakharova
Pharmaceutics 2023, 15(3), 921; https://doi.org/10.3390/pharmaceutics15030921 - 11 Mar 2023
Cited by 5 | Viewed by 2475
Abstract
In this study, a water-soluble form of haloperidol was obtained by coaggregation with calix[4]resorcinol bearing viologen groups on the upper rim and decyl chains on the lower rim to form vesicular nanoparticles. The formation of nanoparticles is achieved by the spontaneous loading of [...] Read more.
In this study, a water-soluble form of haloperidol was obtained by coaggregation with calix[4]resorcinol bearing viologen groups on the upper rim and decyl chains on the lower rim to form vesicular nanoparticles. The formation of nanoparticles is achieved by the spontaneous loading of haloperidol into the hydrophobic domains of aggregates based on this macrocycle. The mucoadhesive and thermosensitive properties of calix[4]resorcinol–haloperidol nanoparticles were established by UV-, fluorescence and CD spectroscopy data. Pharmacological studies have revealed low in vivo toxicity of pure calix[4]resorcinol (LD50 is 540 ± 75 mg/kg for mice and 510 ± 63 mg/kg for rats) and the absence of its effect on the motor activity and psycho-emotional state of mice, which opens up a possibility for its use in the design of effective drug delivery systems. Haloperidol formulated with calix[4]resorcinol exhibits a cataleptogenic effect in rats both when administered intranasally and intraperitoneally. The effect of the intranasal administration of haloperidol with macrocycle in the first 120 min is comparable to the effect of commercial haloperidol, but the duration of catalepsy was shorter by 2.9 and 2.3 times (p < 0.05) at 180 and 240 min, respectively, than that of the control. There was a statistically significant reduction in the cataleptogenic activity at 10 and 30 min after the intraperitoneal injection of haloperidol with calix[4]resorcinol, then there was an increase in the activity by 1.8 times (p < 0.05) at 60 min, and after 120, 180 and 240 min the effect of this haloperidol formulation was at the level of the control sample. Full article
(This article belongs to the Special Issue Supramolecular Systems for Gene and Drug Delivery, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 982 KiB  
Article
Comparative HPLC–DAD–ESI-QTOF/MS/MS Analysis of Bioactive Phenolic Compounds Content in the Methanolic Extracts from Flowering Herbs of Monarda Species and Their Free Radical Scavenging and Antimicrobial Activities
by Małgorzata Kozyra, Anna Biernasiuk, Magdalena Wiktor, Wirginia Kukula-Koch and Anna Malm
Pharmaceutics 2023, 15(3), 964; https://doi.org/10.3390/pharmaceutics15030964 - 16 Mar 2023
Cited by 3 | Viewed by 2452
Abstract
Comparative analysis of flavonoids and phenolic acids composition, in plants of six species of Monarda from family Lamiaceae was carried out. The 70% (v/v) methanolic extracts of flowering herbs of Monarda citriodora Cerv. ex Lag., Monarda bradburiana L.C. Beck, Monarda didyma [...] Read more.
Comparative analysis of flavonoids and phenolic acids composition, in plants of six species of Monarda from family Lamiaceae was carried out. The 70% (v/v) methanolic extracts of flowering herbs of Monarda citriodora Cerv. ex Lag., Monarda bradburiana L.C. Beck, Monarda didyma L., Monarda media Willd., Monarda fistulosa L. and Monarda punctata L. were analyzed for their polyphenol composition as well as antioxidant capacity and antimicrobial effect. Liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC–DAD–ESI-QTOF/MS/MS) was used to identify phenolic compounds. The in vitro antioxidant activity was assessed using a DPPH radical scavenging assay, while antimicrobial activity was measured by the broth microdilution method allowing for MIC (minimal inhibitory concentration) determination. The total polyphenol content (TPC) was assayed by the Folin–Ciocalteu method. The results showed the presence of eighteen different components including phenolic acids and flavonoids together with their derivatives. The presence of six constituents (gallic acid, hydroxybenzoic acid glucoside, ferulic acid, p-coumaric acid, luteolin-7-glucoside and apigenin-7-glucoside) was found to be dependent on the species. To differentiate the samples, the antioxidant activity of 70% (v/v) methanolic extracts was studied and expressed as a percent of DPPH radical inhibition and in EC50 values (mg/mL). The latter values were as follows: M. media (EC50 = 0.090 mg/mL), M. didyma (EC50 = 0.114 mg/mL), M. citriodora (EC50 = 0.139 mg/mL), M. bradburiana (EC50 = 0.141 mg/mL), M. punctata (EC50 = 0.150 mg/mL) and M. fistulosa (EC50 = 0.164 mg/mL). Moreover, all extracts indicated bactericidal activity against reference Gram-positive (MIC = 0.07–1.25 mg/mL) and Gram-negative bacteria (MIC = 0.63–10 mg/mL) as well as fungicidal effect towards yeasts (MIC = 1.25–10 mg/mL). Staphylococcus epidermidis and Micrococcus luteus were the most sensitive to them. All extracts showed promising antioxidant properties and noteworthy activity against the reference Gram-positive bacteria. Antimicrobial effect of the extracts against the reference Gram-negative bacteria as well as fungi (yeasts) from Candida spp. was slight. All extracts showed bactericidal and fungicidal effect. The obtained results indicated that the investigated extracts from Monarda spp. could be potential sources of natural antioxidants and antimicrobial agents, especially with activity towards Gram-positive bacteria. The differences in the composition and properties of the studied samples may influence the pharmacological effects of the studied species. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of Plant Extracts)
Show Figures

Figure 1

22 pages, 5707 KiB  
Article
Analysis of NSAIDs in Rat Plasma Using 3D-Printed Sorbents by LC-MS/MS: An Approach to Pre-Clinical Pharmacokinetic Studies
by Daya Raju Adye, Sachin B. Jorvekar, Upadhyayula Suryanarayana Murty, Subham Banerjee and Roshan M. Borkar
Pharmaceutics 2023, 15(3), 978; https://doi.org/10.3390/pharmaceutics15030978 - 18 Mar 2023
Cited by 6 | Viewed by 2423
Abstract
Analytical sample preparation techniques are essential for assessing chemicals in various biological matrices. The development of extraction techniques is a modern trend in the bioanalytical sciences. We fabricated customized filaments using hot-melt extrusion techniques followed by fused filament fabrication-mediated 3D printing technology to [...] Read more.
Analytical sample preparation techniques are essential for assessing chemicals in various biological matrices. The development of extraction techniques is a modern trend in the bioanalytical sciences. We fabricated customized filaments using hot-melt extrusion techniques followed by fused filament fabrication-mediated 3D printing technology to rapidly prototype sorbents that extract non-steroidal anti-inflammatory drugs from rat plasma for determining pharmacokinetic profiles. The filament was prototyped as a 3D-printed sorbent for extracting small molecules using AffinisolTM, polyvinyl alcohol, and triethyl citrate. The optimized extraction procedure and parameters influencing the sorbent extraction were systematically investigated by the validated LC-MS/MS method. Furthermore, a bioanalytical method was successfully implemented after oral administration to determine the pharmacokinetic profiles of indomethacin and acetaminophen in rat plasma. The Cmax was found to be 0.33 ± 0.04 µg/mL and 27.27 ± 9.9 µg/mL for indomethacin and acetaminophen, respectively, at the maximum time (Tmax) (h) of 0.5–1 h. The mean area under the curve (AUC0–t) for indomethacin was 0.93 ± 0.17 µg h/mL, and for acetaminophen was 32.33± 10.8 µg h/mL. Owing to their newly customizable size and shape, 3D-printed sorbents have opened new opportunities for extracting small molecules from biological matrices in preclinical studies. Full article
(This article belongs to the Special Issue Printed Pharmaceuticals in Future Healthcare)
Show Figures

Figure 1

14 pages, 3174 KiB  
Article
pH-Dependent Behavior of Novel 5-FU Delivery System in Environmental Conditions Comparable to the Gastro-Intestinal Tract
by Geza Lazar, Fran Nekvapil, Branko Glamuzina, Tudor Tamaș, Lucian Barbu-Tudoran, Maria Suciu and Simona Cinta Pinzaru
Pharmaceutics 2023, 15(3), 1011; https://doi.org/10.3390/pharmaceutics15031011 - 21 Mar 2023
Cited by 4 | Viewed by 2421
Abstract
A biogenic carrier for 5-fluorouracil (5-FU) loading and subsequent tableting as a new drug formulation for slow release has been proposed using the biomineral from blue crab carapace. Due to its highly ordered 3D porous nanoarchitecture, the biogenic carbonate carrier could achieve increased [...] Read more.
A biogenic carrier for 5-fluorouracil (5-FU) loading and subsequent tableting as a new drug formulation for slow release has been proposed using the biomineral from blue crab carapace. Due to its highly ordered 3D porous nanoarchitecture, the biogenic carbonate carrier could achieve increased effectiveness in colorectal cancer cure provided that the formulation would successfully pass through the gastric acid conditions. Following the recently proven viability of the concept by demonstrating the slow release of the drug from the carrier using the highly sensitive SERS technique, here we investigated the 5-FU release from the composite tablet drug in pH conditions replicating the gastric environment. The released drug from the tablet was studied in solutions with three relevant pH values, pH 2, pH 3, and pH 4. The 5-FU SERS spectral signature for each pH value was used to build calibration curves for quantitative SERS analysis. The results suggested a similarly slow-releasing pattern in acid pH environments to that in neutral conditions. Although biogenic calcite dissolution was expected in acid conditions, the X-ray diffraction and Raman spectroscopy showed preservation of calcite mineral along with the monohydrocalcite during acid solution exposure for two hours. The total released amount in a time course of seven hours, however, was lower in acidic pH solutions, with a maximum fraction of ~40% of the total amount of loaded drug, for pH 2, as opposed to ~80% for neutral values. Nonetheless, these results clearly prove that the novel composite drug retains its slow-releasing character in environmental conditions compatible with the gastrointestinal pH and that it is a viable and biocompatible alternative for oral delivery of anticancer drug to reach the lower gastro-intestinal tract. Full article
Show Figures

Figure 1

20 pages, 4527 KiB  
Article
Dexamethasone and Dexamethasone Phosphate: Effect on DMPC Membrane Models
by Candelaria Ines Cámara, Matías Ariel Crosio, Ana Valeria Juarez and Natalia Wilke
Pharmaceutics 2023, 15(3), 844; https://doi.org/10.3390/pharmaceutics15030844 - 4 Mar 2023
Cited by 4 | Viewed by 2420
Abstract
Dexamethasone (Dex) and Dexamethasone phosphate (Dex-P) are synthetic glucocorticoids with high anti-inflammatory and immunosuppressive actions that gained visibility because they reduce the mortality in critical patients with COVID-19 connected to assisted breathing. They have been widely used for the treatment of several diseases [...] Read more.
Dexamethasone (Dex) and Dexamethasone phosphate (Dex-P) are synthetic glucocorticoids with high anti-inflammatory and immunosuppressive actions that gained visibility because they reduce the mortality in critical patients with COVID-19 connected to assisted breathing. They have been widely used for the treatment of several diseases and in patients under chronic treatments, thus, it is important to understand their interaction with membranes, the first barrier when these drugs get into the body. Here, the effect of Dex and Dex-P on dimyiristoylphophatidylcholine (DMPC) membranes were studied using Langmuir films and vesicles. Our results indicate that the presence of Dex in DMPC monolayers makes them more compressible and less reflective, induces the appearance of aggregates, and suppresses the Liquid Expanded/Liquid Condensed (LE/LC) phase transition. The phosphorylated drug, Dex-P, also induces the formation of aggregates in DMPC/Dex-P films, but without disturbing the LE/LC phase transition and reflectivity. Insertion experiments demonstrate that Dex induces larger changes in surface pressure than Dex-P, due to its higher hydrophobic character. Both drugs can penetrate membranes at high lipid packings. Vesicle shape fluctuation analysis shows that Dex-P adsorption on GUVs of DMPC decreases membrane deformability. In conclusion, both drugs can penetrate and alter the mechanical properties of DMPC membranes. Full article
Show Figures

Figure 1

14 pages, 1877 KiB  
Article
Development of the First 18F-Labeled Radiohybrid-Based Minigastrin Derivative with High Target Affinity and Tumor Accumulation by Substitution of the Chelating Moiety
by Thomas Günther, Nadine Holzleitner, Daniel Di Carlo, Nicole Urtz-Urban, Constantin Lapa and Hans-Jürgen Wester
Pharmaceutics 2023, 15(3), 826; https://doi.org/10.3390/pharmaceutics15030826 - 3 Mar 2023
Cited by 5 | Viewed by 2417
Abstract
In order to optimize elevated kidney retention of previously reported minigastrin derivatives, we substituted (R)-DOTAGA by DOTA in (R)-DOTAGA-rhCCK-16/-18. CCK-2R-mediated internalization and affinity of the new compounds were determined using AR42J cells. Biodistribution and µSPECT/CT imaging studies at [...] Read more.
In order to optimize elevated kidney retention of previously reported minigastrin derivatives, we substituted (R)-DOTAGA by DOTA in (R)-DOTAGA-rhCCK-16/-18. CCK-2R-mediated internalization and affinity of the new compounds were determined using AR42J cells. Biodistribution and µSPECT/CT imaging studies at 1 and 24 h p.i. were carried out in AR42J tumor-bearing CB17-SCID mice. Both DOTA-containing minigastrin analogs exhibited 3- to 5-fold better IC50 values than their (R)-DOTAGA-counterparts. natLu-labeled peptides revealed higher CCK-2R affinity than their natGa-labeled analogs. In vivo, tumor uptake at 24 h p.i. of the most affine compound, [19F]F-[177Lu]Lu-DOTA-rhCCK-18, was 1.5- and 13-fold higher compared to its (R)-DOTAGA derivative and the reference compound, [177Lu]Lu-DOTA-PP-F11N, respectively. However, activity levels in the kidneys were elevated as well. At 1 h p.i., tumor and kidney accumulation of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 and [18F]F-[natLu]Lu-DOTA-rhCCK-18 was high. We could demonstrate that the choice of chelators and radiometals has a significant impact on CCK-2R affinity and thus tumor uptake of minigastrin analogs. While elevated kidney retention of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 has to be further addressed with regard to radioligand therapy, its radiohybrid analog, [18F]F-[natLu]Lu-DOTA-rhCCK-18, might be ideal for positron emission tomography (PET) imaging due to its high tumor accumulation at 1 h p.i. and the attractive physical properties of fluorine-18. Full article
Show Figures

Figure 1

16 pages, 2345 KiB  
Article
Development and Optimization of Sildenafil Orodispersible Mini-Tablets (ODMTs) for Treatment of Pediatric Pulmonary Hypertension Using Response Surface Methodology
by Ahmed Alalaiwe, Mohammad A. Alsenaidy, Ziyad S. Almalki and Mohamed H. Fayed
Pharmaceutics 2023, 15(3), 923; https://doi.org/10.3390/pharmaceutics15030923 - 12 Mar 2023
Cited by 7 | Viewed by 2408
Abstract
The availability of age-appropriate oral dosage forms for pediatric patients has remained a challenge. Orodispersible mini-tablets (ODMTs) are a promising delivery system for pediatric patients. The purpose of this work was the development and optimization of sildenafil ODMTs as a new dosage form [...] Read more.
The availability of age-appropriate oral dosage forms for pediatric patients has remained a challenge. Orodispersible mini-tablets (ODMTs) are a promising delivery system for pediatric patients. The purpose of this work was the development and optimization of sildenafil ODMTs as a new dosage form for the treatment of pulmonary hypertension in children using a design-of-experiment (DoE) approach. A two-factor, three levels (32) full-factorial design was employed to obtain the optimized formulation. The levels of microcrystalline cellulose (MCC; 10–40% w/w) and partially pre-gelatinized starch (PPGS; 2–10% w/w) were set as independent formulation variables. In addition, mechanical strength, disintegration time (DT), and percent drug release were set as critical quality attributes (CQAs) of sildenafil ODMTs. Further, formulation variables were optimized using the desirability function. ANOVA analysis proved that MCC and PPGS had a significant (p < 0.05) impact on CQAs of sildenafil ODMTs with a pronounced influence of PPGS. The optimized formulation was achieved at low (10% w/w) and high (10% w/w) levels of MCC and PPGS, respectively. The optimized sildenafil ODMTs showed crushing strength of 4.72 ± 0.34 KP, friability of 0.71 ± 0.04%, DT of 39.11 ± 1.03 s, and sildenafil release of 86.21 ± 2.41% after 30 min that achieves the USP acceptance criteria for ODMTs. Validation experiments have shown that the acceptable prediction error (<5%) indicated the robustness of the generated design. In conclusion, sildenafil ODMTs have been developed as a suitable oral formulation for the treatment of pediatric pulmonary hypertension using the fluid bed granulation process and the DoE approach. Full article
(This article belongs to the Special Issue Aspects and Implementation of Pharmaceutical Quality by Design)
Show Figures

Figure 1

16 pages, 848 KiB  
Article
Development of the 99mTc-Labelled SST2 Antagonist TECANT-1 for a First-in-Man Multicentre Clinical Study
by Doroteja Novak, Barbara Janota, Anton Amadeus Hörmann, Agnieszka Sawicka, Marko Kroselj, Alicja Hubalewska-Dydejczyk, Melpomeni Fani, Renata Mikolajczak, Petra Kolenc, Clemens Decristoforo and Piotr Garnuszek
Pharmaceutics 2023, 15(3), 885; https://doi.org/10.3390/pharmaceutics15030885 - 9 Mar 2023
Cited by 4 | Viewed by 2405
Abstract
Broad availability and cost-effectiveness of 99Mo/99mTc generators worldwide support the use, and thus the development, of novel 99mTc-labelled radiopharmaceuticals. In recent years, preclinical and clinical developments for neuroendocrine neoplasms patient management focused on somatostatin receptor subtype 2 (SST2 [...] Read more.
Broad availability and cost-effectiveness of 99Mo/99mTc generators worldwide support the use, and thus the development, of novel 99mTc-labelled radiopharmaceuticals. In recent years, preclinical and clinical developments for neuroendocrine neoplasms patient management focused on somatostatin receptor subtype 2 (SST2) antagonists, mainly due to their superiority in SST2-tumour targeting and improved diagnostic sensitivity over agonists. The goal of this work was to provide a reliable method for facile preparation of a 99mTc-labelled SST2 antagonist, [99mTc]Tc-TECANT-1, in a hospital radiopharmacy setting, suitable for a multi-centre clinical trial. To ensure successful and reproducible on-site preparation of the radiopharmaceutical for human use shortly before administration, a freeze-dried three-vial kit was developed. The final composition of the kit was established based on the radiolabelling results obtained during the optimisation process, in which variables such as precursor content, pH and buffer, as well as kit formulations, were tested. Finally, the prepared GMP-grade batches met all predefined specification parameters together with long-term kit stability and stability of the product [99mTc]Tc-TECANT-1. Furthermore, the selected precursor content complies with micro-dosing, based on an extended single-dose toxicity study, where histopathology NOEL was established at 0.5 mg/kg BW, being more than 1000 times higher than the planned human dose of 20 µg. In conclusion, [99mTc]Tc-TECANT-1 is suitable to be advanced into a first-in-human clinical trial. Full article
(This article belongs to the Special Issue Radiopharmaceuticals for Cancer Imaging and Therapy)
Show Figures

Figure 1

12 pages, 2970 KiB  
Article
Radiolabeled Risperidone microSPECT/CT Imaging for Intranasal Implant Studies Development
by Jon Ander Simón, Emilia Utomo, Félix Pareja, María Collantes, Gemma Quincoces, Aarón Otero, Margarita Ecay, Juan Domínguez-Robles, Eneko Larrañeta and Iván Peñuelas
Pharmaceutics 2023, 15(3), 843; https://doi.org/10.3390/pharmaceutics15030843 - 4 Mar 2023
Cited by 7 | Viewed by 2403
Abstract
The use of intranasal implantable drug delivery systems has many potential advantages for the treatment of different diseases, as they can provide sustained drug delivery, improving patient compliance. We describe a novel proof-of-concept methodological study using intranasal implants with radiolabeled risperidone (RISP) as [...] Read more.
The use of intranasal implantable drug delivery systems has many potential advantages for the treatment of different diseases, as they can provide sustained drug delivery, improving patient compliance. We describe a novel proof-of-concept methodological study using intranasal implants with radiolabeled risperidone (RISP) as a model molecule. This novel approach could provide very valuable data for the design and optimization of intranasal implants for sustained drug delivery. RISP was radiolabeled with 125I by solid supported direct halogen electrophilic substitution and added to a poly(lactide-co-glycolide) (PLGA; 75/25 D,L-Lactide/glycolide ratio) solution that was casted on top of 3D-printed silicone molds adapted for intranasal administration to laboratory animals. Implants were intranasally administered to rats, and radiolabeled RISP release followed for 4 weeks by in vivo non-invasive quantitative microSPECT/CT imaging. Percentage release data were compared with in vitro ones using radiolabeled implants containing either 125I-RISP or [125I]INa and also by HPLC measurement of drug release. Implants remained in the nasal cavity for up to a month and were slowly and steadily dissolved. All methods showed a fast release of the lipophilic drug in the first days with a steadier increase to reach a plateau after approximately 5 days. The release of [125I]I took place at a much slower rate. We herein demonstrate the feasibility of this experimental approach to obtain high-resolution, non-invasive quantitative images of the release of the radiolabeled drug, providing valuable information for improved pharmaceutical development of intranasal implants. Full article
Show Figures

Figure 1

18 pages, 8129 KiB  
Article
Computational Modeling on Drugs Effects for Left Ventricle in Cardiomyopathy Disease
by Smiljana Tomasevic, Miljan Milosevic, Bogdan Milicevic, Vladimir Simic, Momcilo Prodanovic, Srboljub M. Mijailovich and Nenad Filipovic
Pharmaceutics 2023, 15(3), 793; https://doi.org/10.3390/pharmaceutics15030793 - 28 Feb 2023
Cited by 8 | Viewed by 2402
Abstract
Cardiomyopathy is associated with structural and functional abnormalities of the ventricular myocardium and can be classified in two major groups: hypertrophic (HCM) and dilated (DCM) cardiomyopathy. Computational modeling and drug design approaches can speed up the drug discovery and significantly reduce expenses aiming [...] Read more.
Cardiomyopathy is associated with structural and functional abnormalities of the ventricular myocardium and can be classified in two major groups: hypertrophic (HCM) and dilated (DCM) cardiomyopathy. Computational modeling and drug design approaches can speed up the drug discovery and significantly reduce expenses aiming to improve the treatment of cardiomyopathy. In the SILICOFCM project, a multiscale platform is developed using coupled macro- and microsimulation through finite element (FE) modeling of fluid–structure interactions (FSI) and molecular drug interactions with the cardiac cells. FSI was used for modeling the left ventricle (LV) with a nonlinear material model of the heart wall. Simulations of the drugs’ influence on the electro-mechanics LV coupling were separated in two scenarios, defined by the principal action of specific drugs. We examined the effects of Disopyramide and Dygoxin which modulate Ca2+ transients (first scenario), and Mavacamten and 2-deoxy adenosine triphosphate (dATP) which affect changes of kinetic parameters (second scenario). Changes of pressures, displacements, and velocity distributions, as well as pressure–volume (P-V) loops in the LV models of HCM and DCM patients were presented. Additionally, the results obtained from the SILICOFCM Risk Stratification Tool and PAK software for high-risk HCM patients closely followed the clinical observations. This approach can give much more information on risk prediction of cardiac disease to specific patients and better insight into estimated effects of drug therapy, leading to improved patient monitoring and treatment. Full article
Show Figures

Graphical abstract

16 pages, 3721 KiB  
Article
Micellar Form of a Ferrocene-Containing Camphor Sulfonamide with Improved Aqueous Solubility and Tumor Curing Potential
by Maria Schröder, Maria Petrova, Georgi M. Dobrikov, Georgy Grancharov, Denitsa Momekova, Petar D. Petrov and Iva Ugrinova
Pharmaceutics 2023, 15(3), 791; https://doi.org/10.3390/pharmaceutics15030791 - 27 Feb 2023
Cited by 2 | Viewed by 2392
Abstract
The discovery of new anticancer drugs with а higher, more specific activity and diminished side effects than the conventional chemotherapeutic agents is a tremendous challenge to contemporary medical research and development. To achieve a pronounced efficacy, the design of antitumor agents can combine [...] Read more.
The discovery of new anticancer drugs with а higher, more specific activity and diminished side effects than the conventional chemotherapeutic agents is a tremendous challenge to contemporary medical research and development. To achieve a pronounced efficacy, the design of antitumor agents can combine various biologically active subunits in one molecule, which can affect different regulatory pathways in cancer cells. We recently demonstrated that a newly synthesized organometallic compound, a ferrocene-containing camphor sulfonamide (DK164), possesses promising antiproliferative activity against breast and lung cancer cells. However, it still encounters the problem of solubility in biological fluids. In this work, we describe a novel micellar form of DK164 with significantly improved solubility in aqueous medium. DK164 was embedded in biodegradable micelles based on a poly(ethylene oxide)-b-poly(α-cinnamyl-ε-caprolactone-co-ε-caprolactone)-b-poly(ethylene oxide) triblock copolymer (PEO113-b-P(CyCL3-co-CL46)-b-PEO113), and the physicochemical parameters (size, size distribution, zeta potential, encapsulation efficiency) and biological activity of the obtained system were studied. We used cytotoxicity assays and flow cytometry to determine the type of cell death, as well as immunocytochemistry to assess the influence of the encapsulated drug on the dynamics of cellular key proteins (p53 and NFkB) and the process of autophagy. According to our results, the micellar form of the organometallic ferrocene derivate (DK164-NP) exhibited several advantages compared to the free substance, such as higher metabolic stability, better cellular uptake, improved bioavailability, and long-term activity, maintaining nearly the same biological activity and anticancer properties of the drug. Full article
(This article belongs to the Special Issue Application of Polymeric Micelles for Drug and Gene Delivery)
Show Figures

Figure 1