20 pages, 3633 KiB  
Article
Long Non-Coding RNA LINC02802 Regulates In Vitro Sprouting Angiogenesis by Sponging microRNA-486-5p
by Stefania Rosano, Sushant Parab, Alessio Noghero, Davide Corà and Federico Bussolino
Int. J. Mol. Sci. 2022, 23(3), 1653; https://doi.org/10.3390/ijms23031653 - 31 Jan 2022
Cited by 7 | Viewed by 3575
Abstract
In the last several years, accumulating evidence indicates that noncoding RNAs, especially long-noncoding RNAs (lncRNAs) and microRNAs, play essential roles in regulating angiogenesis. However, the contribution of lncRNA-mediated competing-endogenous RNA (ceRNA) activity in the control of capillary sprouting from the pre-existing ones has [...] Read more.
In the last several years, accumulating evidence indicates that noncoding RNAs, especially long-noncoding RNAs (lncRNAs) and microRNAs, play essential roles in regulating angiogenesis. However, the contribution of lncRNA-mediated competing-endogenous RNA (ceRNA) activity in the control of capillary sprouting from the pre-existing ones has not been described so far. Here, by exploiting the transcriptomic profile of VEGF-A-activated endothelial cells in a consolidate three-dimensional culture system, we identified a list of lncRNAs whose expression was modified during the sprouting process. By crossing the lncRNAs with a higher expression level and the highest fold change value between unstimulated and VEGF-A-stimulated endothelial cells, we identified the unknown LINC02802 as the best candidate to take part in sprouting regulation. LINC02802 was upregulated after VEGF-A stimulation and its knockdown resulted in a significant reduction in sprouting activity. Mechanistically, we demonstrated that LINC02802 acts as a ceRNA in the post-transcriptional regulation of Mastermind-like-3 (MAML3) gene expression through a competitive binding with miR-486-5p. Taken together, these results suggest that LINC02802 plays a critical role in preventing the miR-486-5p anti-angiogenic effect and that this inhibitory effect results from the reduction in MAML3 expression. Full article
Show Figures

Figure 1

18 pages, 2870 KiB  
Review
Activity and Function in Human Cells of the Evolutionary Conserved Exonuclease Polynucleotide Phosphorylase
by Federica A. Falchi, Roberto Pizzoccheri and Federica Briani
Int. J. Mol. Sci. 2022, 23(3), 1652; https://doi.org/10.3390/ijms23031652 - 31 Jan 2022
Cited by 11 | Viewed by 4935
Abstract
Polynucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. Human PNPase (hPNPase) is located in mitochondria and is essential for mitochondrial function and homeostasis. Not surprisingly, mutations in the PNPT1 gene, encoding hPNPase, cause serious diseases. hPNPase has been implicated [...] Read more.
Polynucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. Human PNPase (hPNPase) is located in mitochondria and is essential for mitochondrial function and homeostasis. Not surprisingly, mutations in the PNPT1 gene, encoding hPNPase, cause serious diseases. hPNPase has been implicated in a plethora of processes taking place in different cell compartments and involving other proteins, some of which physically interact with hPNPase. This paper reviews hPNPase RNA binding and catalytic activity in relation with the protein structure and in comparison, with the activity of bacterial PNPases. The functions ascribed to hPNPase in different cell compartments are discussed, highlighting the gaps that still need to be filled to understand the physiological role of this ancient protein in human cells. Full article
(This article belongs to the Special Issue Research Progress in RNA-Binding Proteins)
Show Figures

Figure 1

14 pages, 4069 KiB  
Article
The Roles of Two CNG Channels in the Regulation of Ascidian Sperm Chemotaxis
by Kogiku Shiba and Kazuo Inaba
Int. J. Mol. Sci. 2022, 23(3), 1648; https://doi.org/10.3390/ijms23031648 - 31 Jan 2022
Cited by 6 | Viewed by 3352
Abstract
Spermatozoa sense and respond to their environmental signals to ensure fertilization success. Reception and transduction of signals are reflected rapidly in sperm flagellar waveforms and swimming behavior. In the ascidian Ciona intestinalis (type A; also called C. robusta), an egg-derived sulfated steroid [...] Read more.
Spermatozoa sense and respond to their environmental signals to ensure fertilization success. Reception and transduction of signals are reflected rapidly in sperm flagellar waveforms and swimming behavior. In the ascidian Ciona intestinalis (type A; also called C. robusta), an egg-derived sulfated steroid called SAAF (sperm activating and attracting factor), induces both sperm motility activation and chemotaxis. Two types of CNG (cyclic nucleotide-gated) channels, Ci-tetra KCNG (tetrameric, cyclic nucleotide-gated, K+-selective) and Ci-HCN (hyperpolarization-activated and cyclic nucleotide-gated), are highly expressed in Ciona testis from the comprehensive gene expression analysis. To elucidate the sperm signaling pathway to regulate flagellar motility, we focus on the role of CNG channels. In this study, the immunochemical analysis revealed that both CNG channels are expressed in Ciona sperm and localized to sperm flagella. Sperm motility analysis and Ca2+ imaging during chemotaxis showed that CNG channel inhibition affected the changes in flagellar waveforms and Ca2+ efflux needed for the chemotactic turn. These results suggest that CNG channels in Ciona sperm play a vital role in regulating sperm motility and intracellular Ca2+ regulation during chemotaxis. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Sperm Activation)
Show Figures

Figure 1

11 pages, 1360 KiB  
Article
Gaucher Disease Diagnosis Using Lyso-Gb1 on Dry Blood Spot Samples: Time to Change the Paradigm?
by Tama Dinur, Peter Bauer, Christian Beetz, Guido Kramp, Claudia Cozma, Marius-Ionuț Iurașcu, Michal Becker-Cohen, Majdolen Istaiti, Arndt Rolfs, Ari Zimran and Shoshana Revel-Vilk
Int. J. Mol. Sci. 2022, 23(3), 1627; https://doi.org/10.3390/ijms23031627 - 30 Jan 2022
Cited by 27 | Viewed by 5225
Abstract
For years, the gold standard for diagnosing Gaucher disease (GD) has been detecting reduced β-glucocerebrosidase (GCase) activity in peripheral blood cells combined with GBA1 mutation analysis. The use of dried blood spot (DBS) specimens offers many advantages, including easy collection, the need for [...] Read more.
For years, the gold standard for diagnosing Gaucher disease (GD) has been detecting reduced β-glucocerebrosidase (GCase) activity in peripheral blood cells combined with GBA1 mutation analysis. The use of dried blood spot (DBS) specimens offers many advantages, including easy collection, the need for a small amount of blood, and simpler transportation. However, DBS has limitations for measuring GCase activity. In this paper, we recount our cross-sectional study and publish seven years of experience using DBS samples and levels of the deacylated form of glucocerebroside, glucosylsphingosine (lyso-Gb1), for GD diagnosis. Of 444 screened subjects, 99 (22.3%) were diagnosed with GD at a median (range) age of 21 (1–78) years. Lyso-Gb levels for genetically confirmed GD patients vs. subjects negative to GD diagnosis were 252 (9–1340) ng/mL and 5.4 (1.5–16) ng/mL, respectively. Patients diagnosed with GD1 and mild GBA1 variants had lower median (range) lyso-Gb1, 194 (9–1050), compared to GD1 and severe GBA1 variants, 447 (38–1340) ng/mL, and neuronopathic GD, 325 (116–1270) ng/mL (p = 0.001). Subjects with heterozygous GBA1 variants (carrier) had higher lyso-Gb1 levels, 5.8 (2.5–15.3) ng/mL, compared to wild-type GBA1, 4.9 (1.5–16), ng/mL (p = 0.001). Lyso-Gb1 levels, median (range), were 5 (2.7–10.7) in heterozygous GBA1 carriers with Parkinson’s disease (PD), similar to lyso-Gb1 levels in subjects without PD. We call for a paradigm change for the diagnosis of GD based on lyso-Gb1 measurements and confirmatory GBA1 mutation analyses in DBS. Lyso-Gb1 levels could not be used to differentiate between heterozygous GBA1 carriers and wild type. Full article
(This article belongs to the Special Issue New Trends in Gaucher Disease: A Model for Rare Lysosomal Disorders)
Show Figures

Figure 1

17 pages, 2596 KiB  
Article
MHY2245, a Sirtuin Inhibitor, Induces Cell Cycle Arrest and Apoptosis in HCT116 Human Colorectal Cancer Cells
by Yong Jung Kang, Jung Yoon Jang, Young Hoon Kwon, Jun Ho Lee, Sanggwon Lee, Yujin Park, Young-Suk Jung, Eunok Im, Hyung Ryong Moon, Hae Young Chung and Nam Deuk Kim
Int. J. Mol. Sci. 2022, 23(3), 1590; https://doi.org/10.3390/ijms23031590 - 29 Jan 2022
Cited by 19 | Viewed by 3662
Abstract
Sirtuins (SIRTs), which are nicotinamide adenine dinucleotide-dependent class III histone deacetylases, regulate cell division, survival, and senescence. Although sirtinol, a synthetic SIRT inhibitor, is known to exhibit antitumor effects, its mechanism of action is not well understood. Therefore, we aimed to assess the [...] Read more.
Sirtuins (SIRTs), which are nicotinamide adenine dinucleotide-dependent class III histone deacetylases, regulate cell division, survival, and senescence. Although sirtinol, a synthetic SIRT inhibitor, is known to exhibit antitumor effects, its mechanism of action is not well understood. Therefore, we aimed to assess the anticancer effects and underlying mechanism of MHY2245, a derivative of sirtinol, in HCT116 human colorectal cancer cells in vitro. Treatment with MHY2245 decreased SIRT1 activity and caused DNA damage, leading to the upregulation of p53 acetylation, and increased levels of p53, phosphorylation of H2A histone family member X, ataxia telangiectasia and Rad3-related kinase, checkpoint kinase 1 (Chk1), and Chk2. The level of the breast cancer type 1 susceptibility protein was also found to decrease. MHY2245 induced G2/M phase cell cycle arrest via the downregulation of cyclin B1, cell division cycle protein 2 (Cdc2), and Cdc25c. Further, MHY2245 induced HCT116 cell death via apoptosis, which was accompanied by internucleosomal DNA fragmentation, decreased B-cell lymphoma 2 (Bcl-2) levels, increased Bcl-2-asscociated X protein levels, cleavage of poly(ADP-ribose) polymerase, and activation of caspases -3, -8, and -9. Overall, MHY2245 induces cell cycle arrest, triggers apoptosis through caspase activation, and exhibits DNA damage response-associated anticancer effects. Full article
(This article belongs to the Special Issue Targeted Cancer Therapies and Programmed Cell Death)
Show Figures

Figure 1

19 pages, 4560 KiB  
Article
Anti-Thrombotic Effects of Artesunate through Regulation of cAMP and PI3K/MAPK Pathway on Human Platelets
by Shin-Sook Yoon, Hyuk-Woo Kwon, Jung-Hae Shin, Man Hee Rhee, Chang-Eun Park and Dong-Ha Lee
Int. J. Mol. Sci. 2022, 23(3), 1586; https://doi.org/10.3390/ijms23031586 - 29 Jan 2022
Cited by 22 | Viewed by 4088
Abstract
Normal activation of platelets and their aggregation are crucial for proper hemostasis. It appears that excessive or abnormal aggregation of platelets may bring about cardiovascular diseases such as stroke, atherosclerosis, and thrombosis. For this reason, finding a substance that can regulate platelet aggregation [...] Read more.
Normal activation of platelets and their aggregation are crucial for proper hemostasis. It appears that excessive or abnormal aggregation of platelets may bring about cardiovascular diseases such as stroke, atherosclerosis, and thrombosis. For this reason, finding a substance that can regulate platelet aggregation or suppress aggregation will aid in the prevention and treatment of cardiovascular diseases. Artesunate is a compound extracted from the plant roots of Artemisia or Scopolia, and its effects have shown to be promising in areas of anticancer and Alzheimer’s disease. However, the role and mechanisms by which artesunate affects the aggregation of platelets and the formation of a thrombus are currently not understood. This study examines the ways artesunate affects the aggregation of platelets and the formation of a thrombus on platelets induced by U46619. As a result, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) production were increased significantly by artesunate relative to the doses, as well as phosphorylated vasodilator-stimulated phosphoprotein (VASP) and inositol 1,4,5-trisphosphate receptor (IP3R), substrates to cAMP-dependent kinase and cGMP-dependent kinase, in a significant manner. The Ca2+, normally mobilized from the dense tubular system, was inhibited due to IP3R phosphorylation from artesunate, and phosphorylated VASP aided in inhibiting platelet activity via αIIb/β3 platelet membrane inactivation and inhibiting fibrinogen binding. In addition, MAPK and PI3K/Akt phosphorylation was inhibited via artesunate in a significant manner, causing the production of TXA2 and intracellular granular secretion (serotonin and ATP release) to be reduced. Therefore, we suggest that artesunate has value as a substance that inhibits platelet aggregation and thrombus formation through an antiplatelet mechanism. Full article
(This article belongs to the Special Issue The Role of Platelets in Human Health and Disease)
Show Figures

Figure 1

11 pages, 3282 KiB  
Article
Structural Basis of Redox-Sensing Transcriptional Repressor Rex with Cofactor NAD+ and Operator DNA
by Kang Hwa Jeong, Hyun Jin Lee, Young Woo Park and Jae Young Lee
Int. J. Mol. Sci. 2022, 23(3), 1578; https://doi.org/10.3390/ijms23031578 - 29 Jan 2022
Cited by 1 | Viewed by 3314
Abstract
The transcriptional repressor Rex plays important roles in regulating the expression of respiratory genes by sensing the reduction–oxidation (redox) state according to the intracellular NAD+/NADH balance. Previously, we reported on crystal structures of apo, NAD+-bound, and NADH-bound forms of [...] Read more.
The transcriptional repressor Rex plays important roles in regulating the expression of respiratory genes by sensing the reduction–oxidation (redox) state according to the intracellular NAD+/NADH balance. Previously, we reported on crystal structures of apo, NAD+-bound, and NADH-bound forms of Rex from Thermotoga maritima to analyze the structural basis of transcriptional regulation depending on either NAD+ or NADH binding. In this study, the crystal structure of Rex in ternary complex with NAD+ and operator DNA revealed that the N-terminal domain of Rex, including the helix-turn-helix motif, forms extensive contacts with DNA in addition to DNA sequence specificity. Structural comparison of the Rex in apo, NAD+-bound, NADH-bound, and ternary complex forms provides a comprehensive picture of transcriptional regulation in the Rex. These data demonstrate that the conformational change in Rex when binding with the reduced NADH or oxidized NAD+ determines operator DNA binding. The movement of the N-terminal domains toward the operator DNA was blocked upon binding of NADH ligand molecules. The structural results provide insights into the molecular mechanism of Rex binding with operator DNA and cofactor NAD+/NADH, which is conserved among Rex family repressors. Structural analysis of Rex from T. maritima also supports the previous hypothesis about the NAD+/NADH-specific transcriptional regulation mechanism of Rex homologues. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 7495 KiB  
Article
The Cumulative Formation of R-loop Interacts with Histone Modifications to Shape Cell Reprogramming
by Hanshuang Li, Chunshen Long, Yan Hong, Lemuge Chao, Yong Peng and Yongchun Zuo
Int. J. Mol. Sci. 2022, 23(3), 1567; https://doi.org/10.3390/ijms23031567 - 29 Jan 2022
Cited by 7 | Viewed by 3826
Abstract
R-loop, a three-stranded RNA/DNA structure, plays important roles in modulating genome stability and gene expression, but the molecular mechanism of R-loops in cell reprogramming remains elusive. Here, we comprehensively profiled the genome-wide landscape of R-loops during cell reprogramming. The results showed that the [...] Read more.
R-loop, a three-stranded RNA/DNA structure, plays important roles in modulating genome stability and gene expression, but the molecular mechanism of R-loops in cell reprogramming remains elusive. Here, we comprehensively profiled the genome-wide landscape of R-loops during cell reprogramming. The results showed that the R-loop formation on most different types of repetitive elements is stage-specific in cell reprogramming. We unveiled that the cumulative deposition of an R-loop subset is positively correlated with gene expression during reprogramming. More importantly, the dynamic turnover of this R-loop subset is accompanied by the activation of the pluripotent transcriptional regulatory network (TRN). Moreover, the large accumulation of the active histone marker H3K4me3 and the reduction in H3K27me3 were also observed in these R-loop regions. Finally, we characterized the dynamic network of R-loops that facilitates cell fate transitions in reprogramming. Together, our study provides a new clue for deciphering the interplay mechanism between R-loops and HMs to control cell reprogramming. Full article
(This article belongs to the Special Issue Pluripotent Stem Cells 2021)
Show Figures

Figure 1

21 pages, 5345 KiB  
Article
The T850D Phosphomimetic Mutation in the Androgen Receptor Ligand Binding Domain Enhances Recruitment at Activation Function 2
by Christine Helsen, Tien Nguyen, Thomas Vercruysse, Staf Wouters, Dirk Daelemans, Arnout Voet and Frank Claessens
Int. J. Mol. Sci. 2022, 23(3), 1557; https://doi.org/10.3390/ijms23031557 - 29 Jan 2022
Cited by 4 | Viewed by 2934
Abstract
Several key functions of the androgen receptor (AR) such as hormone recognition and co-regulator recruitment converge in the ligand binding domain (LBD). Loss- or gain-of-function of the AR contributes to pathologies such as the androgen insensitivity syndrome and prostate cancer. Here, we describe [...] Read more.
Several key functions of the androgen receptor (AR) such as hormone recognition and co-regulator recruitment converge in the ligand binding domain (LBD). Loss- or gain-of-function of the AR contributes to pathologies such as the androgen insensitivity syndrome and prostate cancer. Here, we describe a gain-of-function mutation of the surface-exposed threonine at position 850, located at the amino-terminus of Helix 10 (H10) in the AR LBD. Since T850 phosphorylation was reported to affect AR function, we created the phosphomimetic mutation T850D. The AR T850D variant has a 1.5- to 2-fold increased transcriptional activity with no effect on ligand affinity. In the androgen responsive LNCaP cell line grown in medium with low androgen levels, we observed a growth advantage for cells in which the endogenous AR was replaced by AR T850D. Despite the distance to the AF2 site, the AR T850D LBD displayed an increased affinity for coactivator peptides as well as the 23FQNLF27 motif of AR itself. Molecular Dynamics simulations confirm allosteric transmission of the T850D mutation towards the AF2 site via extended hydrogen bond formation between coactivator peptide and AF2 site. This mechanistic study thus confirms the gain-of-function character of T850D and T850 phosphorylation for AR activity and reveals details of the allosteric communications within the LBD. Full article
(This article belongs to the Special Issue Molecular Biology of Nuclear Receptors 3.0)
Show Figures

Figure 1

22 pages, 1117 KiB  
Review
The Role of Androgen Receptor and microRNA Interactions in Androgen-Dependent Diseases
by Agnieszka Bielska, Anna Skwarska, Adam Kretowski and Magdalena Niemira
Int. J. Mol. Sci. 2022, 23(3), 1553; https://doi.org/10.3390/ijms23031553 - 28 Jan 2022
Cited by 14 | Viewed by 5311
Abstract
The androgen receptor (AR) is a member of the steroid hormone receptor family of nuclear transcription factors. It is present in the primary/secondary sexual organs, kidneys, skeletal muscles, adrenal glands, skin, nervous system, and breast. Abnormal AR functioning has been identified in numerous [...] Read more.
The androgen receptor (AR) is a member of the steroid hormone receptor family of nuclear transcription factors. It is present in the primary/secondary sexual organs, kidneys, skeletal muscles, adrenal glands, skin, nervous system, and breast. Abnormal AR functioning has been identified in numerous diseases, specifically in prostate cancer (PCa). Interestingly, recent studies have indicated a relationship between the AR and microRNA (miRNA) crosstalk and cancer progression. MiRNAs are small, endogenous, non-coding molecules that are involved in crucial cellular processes, such as proliferation, apoptosis, or differentiation. On the one hand, AR may be responsible for the downregulation or upregulation of specific miRNA, while on the other hand, AR is often a target of miRNAs due to their regulatory function on AR gene expression. A deeper understanding of the AR–miRNA interactions may contribute to the development of better diagnostic tools as well as to providing new therapeutic approaches. While most studies usually focus on the role of miRNAs and AR in PCa, in this review, we go beyond PCa and provide insight into the most recent discoveries about the interplay between AR and miRNAs, as well as about other AR-associated and AR-independent diseases. Full article
(This article belongs to the Special Issue Molecular Research of Nuclear Receptors and Oncology)
Show Figures

Figure 1

18 pages, 781 KiB  
Review
Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy
by Yasunari Matsuzaka, Yukihiko Hirai, Kazuo Hashido and Takashi Okada
Int. J. Mol. Sci. 2022, 23(3), 1551; https://doi.org/10.3390/ijms23031551 - 28 Jan 2022
Cited by 7 | Viewed by 5588
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin–glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to [...] Read more.
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin–glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis—circulating RNA molecules—has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy. Full article
(This article belongs to the Special Issue Exosome: New Approaches of Therapy for Cell Death)
Show Figures

Figure 1

20 pages, 2634 KiB  
Review
Molecular Mechanisms of Kidney Injury and Repair
by Sandra Rayego-Mateos, Laura Marquez-Expósito, Raquel Rodrigues-Diez, Ana B. Sanz, Roser Guiteras, Nuria Doladé, Irene Rubio-Soto, Anna Manonelles, Sergi Codina, Alberto Ortiz, Josep M. Cruzado, Marta Ruiz-Ortega and Anna Sola
Int. J. Mol. Sci. 2022, 23(3), 1542; https://doi.org/10.3390/ijms23031542 - 28 Jan 2022
Cited by 60 | Viewed by 10378
Abstract
Chronic kidney disease (CKD) will become the fifth global cause of death by 2040, thus emphasizing the need to better understand the molecular mechanisms of damage and regeneration in the kidney. CKD predisposes to acute kidney injury (AKI) which, in turn, promotes CKD [...] Read more.
Chronic kidney disease (CKD) will become the fifth global cause of death by 2040, thus emphasizing the need to better understand the molecular mechanisms of damage and regeneration in the kidney. CKD predisposes to acute kidney injury (AKI) which, in turn, promotes CKD progression. This implies that CKD or the AKI-to-CKD transition are associated with dysfunctional kidney repair mechanisms. Current therapeutic options slow CKD progression but fail to treat or accelerate recovery from AKI and are unable to promote kidney regeneration. Unraveling the cellular and molecular mechanisms involved in kidney injury and repair, including the failure of this process, may provide novel biomarkers and therapeutic tools. We now review the contribution of different molecular and cellular events to the AKI-to-CKD transition, focusing on the role of macrophages in kidney injury, the different forms of regulated cell death and necroinflammation, cellular senescence and the senescence-associated secretory phenotype (SAPS), polyploidization, and podocyte injury and activation of parietal epithelial cells. Next, we discuss key contributors to repair of kidney injury and opportunities for their therapeutic manipulation, with a focus on resident renal progenitor cells, stem cells and their reparative secretome, certain macrophage subphenotypes within the M2 phenotype and senescent cell clearance. Full article
Show Figures

Figure 1

17 pages, 4120 KiB  
Article
Teriflunomide Preserves Neuronal Activity and Protects Mitochondria in Brain Slices Exposed to Oxidative Stress
by Bimala Malla, Agustin Liotta, Helena Bros, Rebecca Ulshöfer, Friedemann Paul, Anja E. Hauser, Raluca Niesner and Carmen Infante-Duarte
Int. J. Mol. Sci. 2022, 23(3), 1538; https://doi.org/10.3390/ijms23031538 - 28 Jan 2022
Cited by 12 | Viewed by 3766
Abstract
Teriflunomide (TFN) limits relapses in relapsing–remitting multiple sclerosis (RRMS) by reducing lymphocytic proliferation through the inhibition of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) and the subsequent modulation of de novo pyrimidine synthesis. Alterations of mitochondrial function as a consequence of oxidative stress have [...] Read more.
Teriflunomide (TFN) limits relapses in relapsing–remitting multiple sclerosis (RRMS) by reducing lymphocytic proliferation through the inhibition of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) and the subsequent modulation of de novo pyrimidine synthesis. Alterations of mitochondrial function as a consequence of oxidative stress have been reported during neuroinflammation. Previously, we showed that TFN prevents alterations of mitochondrial motility caused by oxidative stress in peripheral axons. Here, we aimed to validate TFN effects on mitochondria and neuronal activity in hippocampal brain slices, in which cellular distribution and synaptic circuits are largely preserved. TFN effects on metabolism and neuronal activity were investigated by assessing oxygen partial pressure and local field potential in acute slices. Additionally, we imaged mitochondria in brain slices from the transgenic Thy1-CFP/COX8A)S2Lich/J (mitoCFP) mice using two-photon microscopy. Although TFN could not prevent oxidative stress-related depletion of ATP, it preserved oxygen consumption and neuronal activity in CNS tissue during oxidative stress. Furthermore, TFN prevented mitochondrial shortening and fragmentation of puncta-shaped and network mitochondria during oxidative stress. Regarding motility, TFN accentuated the decrease in mitochondrial displacement and increase in speed observed during oxidative stress. Importantly, these effects were not associated with neuronal viability and did not lead to axonal damage. In conclusion, during conditions of oxidative stress, TFN preserves the functionality of neurons and prevents morphological and motility alterations of mitochondria. Full article
(This article belongs to the Special Issue Mitochondrial Transport and Energy Metabolism in Health and Diseases)
Show Figures

Figure 1

21 pages, 1678 KiB  
Review
Role of the Transcription Factor FOSL1 in Organ Development and Tumorigenesis
by Vladimir V. Sobolev, Asiat Z. Khashukoeva, Olga E. Evina, Natalia A. Geppe, Svetlana N. Chebysheva, Irina M. Korsunskaya, Ekaterina Tchepourina and Alexandre Mezentsev
Int. J. Mol. Sci. 2022, 23(3), 1521; https://doi.org/10.3390/ijms23031521 - 28 Jan 2022
Cited by 58 | Viewed by 6858
Abstract
The transcription factor FOSL1 plays an important role in cell differentiation and tumorigenesis. Primarily, FOSL1 is crucial for the differentiation of several cell lineages, namely adipocytes, chondrocytes, and osteoblasts. In solid tumors, FOSL1 controls the progression of tumor cells through the epithelial–mesenchymal transformation. [...] Read more.
The transcription factor FOSL1 plays an important role in cell differentiation and tumorigenesis. Primarily, FOSL1 is crucial for the differentiation of several cell lineages, namely adipocytes, chondrocytes, and osteoblasts. In solid tumors, FOSL1 controls the progression of tumor cells through the epithelial–mesenchymal transformation. In this review, we summarize the available data on FOSL1 expression, stabilization, and degradation in the cell. We discuss how FOSL1 is integrated into the intracellular signaling mechanisms and provide a comprehensive analysis of FOSL1 influence on gene expression. We also analyze the pathological changes caused by altered Fosl1 expression in genetically modified mice. In addition, we dedicated a separate section of the review to the role of FOSL1 in human cancer. Primarily, we focus on the FOSL1 expression pattern in solid tumors, FOSL1 importance as a prognostic factor, and FOSL1 perspectives as a molecular target for anticancer therapy. Full article
(This article belongs to the Special Issue Advances in Molecular Research of Oncogenes)
Show Figures

Figure 1

19 pages, 3767 KiB  
Article
Insertion Sequence (IS) Element-Mediated Activating Mutations of the Cryptic Aromatic β-Glucoside Utilization (BglGFB) Operon Are Promoted by the Anti-Terminator Protein (BglG) in Escherichia coli
by Zhongge Zhang, Kingswell Zhou, Dennis Tran and Milton Saier
Int. J. Mol. Sci. 2022, 23(3), 1505; https://doi.org/10.3390/ijms23031505 - 28 Jan 2022
Cited by 6 | Viewed by 2530
Abstract
The cryptic β-glucoside GFB (bglGFB) operon in Escherichia coli (E. coli) can be activated by mutations arising under starvation conditions in the presence of an aromatic β-glucoside. This may involve the insertion of an insertion sequence (IS) element into [...] Read more.
The cryptic β-glucoside GFB (bglGFB) operon in Escherichia coli (E. coli) can be activated by mutations arising under starvation conditions in the presence of an aromatic β-glucoside. This may involve the insertion of an insertion sequence (IS) element into a “stress-induced DNA duplex destabilization” (SIDD) region upstream of the operon promoter, although other types of mutations can also activate the bgl operon. Here, we show that increased expression of the bglG gene, encoding a well-characterized transcriptional antiterminator, dramatically increases the frequency of both IS-mediated and IS-independent Bgl+ mutations occurring on salicin- and arbutin-containing agar plates. Both mutation rates increased with increasing levels of bglG expression but IS-mediated mutations were more prevalent at lower BglG levels. Mutations depended on the presence of both BglG and an aromatic β-glucoside, and bglG expression did not influence IS insertion in other IS-activated operons tested. The N-terminal mRNA-binding domain of BglG was essential for mutational activation, and alteration of BglG’s binding site in the mRNA nearly abolished Bgl+ mutant appearances. Increased bglG expression promoted residual bgl operon expression in parallel with the increases in mutation rates. Possible mechanisms are proposed explaining how BglG enhances the frequencies of bgl operon activating mutations. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1