2 pages, 147 KiB  
Letter
Letter to the Editor: “Ion Channels in Brain Metastasis”—Ion Channels in Cancer Set up and Metastatic Progression
by Daniela D’Arcangelo, Ezio M. Nicodemi and Antonio Facchiano
Int. J. Mol. Sci. 2017, 18(4), 718; https://doi.org/10.3390/ijms18040718 - 28 Mar 2017
Cited by 1 | Viewed by 2966
Abstract
The review by Klumpp, L. et al. entitled Ion Channels in Brain Metastasis [1] discusses the role of ion channels in breast cancer, lung cancer and melanoma in metastatic tropism to the brain [...] Full article
(This article belongs to the Section Biochemistry)
12 pages, 466 KiB  
Review
Extracellular Vesicles as Therapeutic Agents in Systemic Lupus Erythematosus
by Javier Perez-Hernandez, Josep Redon and Raquel Cortes
Int. J. Mol. Sci. 2017, 18(4), 717; https://doi.org/10.3390/ijms18040717 - 28 Mar 2017
Cited by 51 | Viewed by 8165
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease that affects multiple organs. Currently, therapeutic molecules present adverse side effects and are only effective in some SLE patient subgroups. Extracellular vesicles (EV), including exosomes, microvesicles and apoptotic bodies, are released by most cell [...] Read more.
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease that affects multiple organs. Currently, therapeutic molecules present adverse side effects and are only effective in some SLE patient subgroups. Extracellular vesicles (EV), including exosomes, microvesicles and apoptotic bodies, are released by most cell types, carry nucleic acids, proteins and lipids and play a crucial role in cell-to-cell communication. EVs can stimulate or suppress the immune responses depending on the context. In SLE, EVs can work as autoadjuvants, enhance immune complex formation and maintaining inflammation state. Over the last years, EVs derived from mesenchymal stem cells and antigen presenting cells have emerged as cell-free therapeutic agents to treat autoimmune and inflammatory diseases. In this review, we summarize the current therapeutic applications of extracellular vesicles to regulate immune responses and to ameliorate disease activity in SLE and other autoimmune disorders. Full article
Show Figures

Figure 1

14 pages, 4311 KiB  
Article
Endogenously Expressed IL-4Rα Promotes the Malignant Phenotype of Human Pancreatic Cancer In Vitro and In Vivo
by Benno Traub, Lie Sun, Yongsu Ma, Pengfei Xu, Johannes Lemke, Stephan Paschke, Doris Henne-Bruns, Uwe Knippschild and Marko Kornmann
Int. J. Mol. Sci. 2017, 18(4), 716; https://doi.org/10.3390/ijms18040716 - 28 Mar 2017
Cited by 19 | Viewed by 5310
Abstract
Exogenous interleukin-4 (IL-4) has been demonstrated to affect the growth of different human malignancies including pancreatic cancer cells. The aim of our study was to determine the role of endogenously expressed IL-4-receptor-α-chain (IL-4Rα) in pancreatic cancer cells. IL-4Rα-suppression was achieved by generating Capan-1 [...] Read more.
Exogenous interleukin-4 (IL-4) has been demonstrated to affect the growth of different human malignancies including pancreatic cancer cells. The aim of our study was to determine the role of endogenously expressed IL-4-receptor-α-chain (IL-4Rα) in pancreatic cancer cells. IL-4Rα-suppression was achieved by generating Capan-1 cells stably expressing shRNA targeting IL-4Rα. The malignant phenotype was characterized by assessing growth properties, directional and non-directional cell movement in vitro and tumor growth in vivo. Signaling pathways were analyzed upon IL-4 and IL-13 stimulation of wildtype (WT) and control-transfected cells compared to IL-4Rα-knockdown cells. Silencing of IL-4Rα resulted in reduced anchorage-dependent cell growth (p < 0.05) and reduced anchorage-independent colony size (p < 0.001) in vitro. Moreover, cell movement and migration was inhibited. IL-4 and IL-13 stimulation of Capan-1-WT cells induced activation of similar pathways like stimulation with Insulin-like growth factor (IGF)-I. This activation was reduced after IL-4Rα downregulation while IGF-I signaling seemed to be enhanced in knockdown-clones. Importantly, IL-4Rα silencing also significantly suppressed tumor growth in vivo. The present study indicates that endogenously expressed IL-4 and IL-4Rα contribute to the malignant phenotype of pancreatic cancer cells by activating diverse pro-oncogenic signaling pathways. Addressing these pathways may contribute to the treatment of the disease. Full article
(This article belongs to the Special Issue Pancreatic Disorders)
Show Figures

Graphical abstract

19 pages, 704 KiB  
Review
Function and Clinical Implications of Long Non-Coding RNAs in Melanoma
by Georg Richtig, Barbara Ehall, Erika Richtig, Ariane Aigelsreiter, Tony Gutschner and Martin Pichler
Int. J. Mol. Sci. 2017, 18(4), 715; https://doi.org/10.3390/ijms18040715 - 28 Mar 2017
Cited by 37 | Viewed by 6513
Abstract
Metastatic melanoma is the most deadly type of skin cancer. Despite the success of immunotherapy and targeted agents, the majority of patients experience disease recurrence upon treatment and die due to their disease. Long non-coding RNAs (lncRNAs) are a new subclass of non-protein [...] Read more.
Metastatic melanoma is the most deadly type of skin cancer. Despite the success of immunotherapy and targeted agents, the majority of patients experience disease recurrence upon treatment and die due to their disease. Long non-coding RNAs (lncRNAs) are a new subclass of non-protein coding RNAs involved in (epigenetic) regulation of cell growth, invasion, and other important cellular functions. Consequently, recent research activities focused on the discovery of these lncRNAs in a broad spectrum of human diseases, especially cancer. Additional efforts have been undertaken to dissect the underlying molecular mechanisms employed by lncRNAs. In this review, we will summarize the growing evidence of deregulated lncRNA expression in melanoma, which is linked to tumor growth and progression. Moreover, we will highlight specific molecular pathways and modes of action for some well-studied lncRNAs and discuss their potential clinical implications. Full article
(This article belongs to the Collection Regulation by Non-coding RNAs)
Show Figures

Figure 1

16 pages, 1080 KiB  
Review
It Is Imperative to Establish a Pellucid Definition of Chimeric RNA and to Clear Up a Lot of Confusion in the Relevant Research
by Chengfu Yuan, Yaping Han, Lucas Zellmer, Wenxiu Yang, Zhizhong Guan, Wenfeng Yu, Hai Huang and D. Joshua Liao
Int. J. Mol. Sci. 2017, 18(4), 714; https://doi.org/10.3390/ijms18040714 - 28 Mar 2017
Cited by 14 | Viewed by 6203
Abstract
There have been tens of thousands of RNAs deposited in different databases that contain sequences of two genes and are coined chimeric RNAs, or chimeras. However, “chimeric RNA” has never been lucidly defined, partly because “gene” itself is still ill-defined and because the [...] Read more.
There have been tens of thousands of RNAs deposited in different databases that contain sequences of two genes and are coined chimeric RNAs, or chimeras. However, “chimeric RNA” has never been lucidly defined, partly because “gene” itself is still ill-defined and because the means of production for many RNAs is unclear. Since the number of putative chimeras is soaring, it is imperative to establish a pellucid definition for it, in order to differentiate chimeras from regular RNAs. Otherwise, not only will chimeric RNA studies be misled but also characterization of fusion genes and unannotated genes will be hindered. We propose that only those RNAs that are formed by joining two RNA transcripts together without a fusion gene as a genomic basis should be regarded as authentic chimeras, whereas those RNAs transcribed as, and cis-spliced from, single transcripts should not be deemed as chimeras. Many RNAs containing sequences of two neighboring genes may be transcribed via a readthrough mechanism, and thus are actually RNAs of unannotated genes or RNA variants of known genes, but not chimeras. In today’s chimeric RNA research, there are still several key flaws, technical constraints and understudied tasks, which are also described in this perspective essay. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 3308 KiB  
Article
Overexpression of Exosomal Cardioprotective miRNAs Mitigates Hypoxia-Induced H9c2 Cells Apoptosis
by Jinwei Zhang, Jideng Ma, Keren Long, Wanling Qiu, Yujie Wang, Zihui Hu, Can Liu, Yi Luo, Anan Jiang, Long Jin, Qianzi Tang, Xun Wang, Xuewei Li and Mingzhou Li
Int. J. Mol. Sci. 2017, 18(4), 711; https://doi.org/10.3390/ijms18040711 - 28 Mar 2017
Cited by 73 | Viewed by 9624
Abstract
Recent evidence suggests that hypoxia caused by acute myocardial infarction can induce cardiomyocyte apoptosis. Exosomes are signalling mediators that contribute to intercellular communication by transporting cytosolic components including miRNAs, mRNAs, and proteins. However, the systemic regulation and function of exosomal miRNAs in hypoxic [...] Read more.
Recent evidence suggests that hypoxia caused by acute myocardial infarction can induce cardiomyocyte apoptosis. Exosomes are signalling mediators that contribute to intercellular communication by transporting cytosolic components including miRNAs, mRNAs, and proteins. However, the systemic regulation and function of exosomal miRNAs in hypoxic cardiomyocytes are currently not well understood. Here, we used small RNA sequencing to investigate the effects of hypoxia stress on miRNAome of rat cardiomyoblast cells (H9c2) and corresponding exosomes. We identified 92 and 62 miRNAs in cells and exosomes, respectively, that were differentially expressed between hypoxia and normoxia. Hypoxia strongly modulated expression of hypoxia-associated miRNAs in H9c2 cells, and altered the miRNAome of H9c2 cells-derived exosomes. Functional enrichment analysis revealed extensive roles of differentially expressed exosomal miRNAs in the HIF-1 signalling pathway and in apoptosis-related pathways including the TNF, MAPK, and mTOR pathways. Furthermore, gain- and loss-of-function analysis demonstrated potential anti-apoptotic effects of the hypoxia-induced exosomal miRNAs, including miR-21-5p, miR-378-3p, miR-152-3p, and let-7i-5p; luciferase reporter assay confirmed that Atg12 and Faslg are targets of miR-152-3p and let-7i-5p, respectively. To summarize, this study revealed that hypoxia-induced exosomes derived from H9c2 cells loaded cardioprotective miRNAs, which mitigate hypoxia-induced H9c2 cells apoptosis. Full article
(This article belongs to the Special Issue microRNA Regulation 2017)
Show Figures

Graphical abstract

23 pages, 5593 KiB  
Review
Recent Advances in Nanoparticle-Mediated Delivery of Anti-Inflammatory Phytocompounds
by Raffaele Conte, Valentina Marturano, Gianfranco Peluso, Anna Calarco and Pierfrancesco Cerruti
Int. J. Mol. Sci. 2017, 18(4), 709; https://doi.org/10.3390/ijms18040709 - 28 Mar 2017
Cited by 92 | Viewed by 13658
Abstract
Phytocompounds have been used in medicine for decades owing to their potential in anti-inflammatory applications. However, major difficulties in achieving sustained delivery of phyto-based drugs are related to their low solubility and cell penetration, and high instability. To overcome these disadvantages, nanosized delivery [...] Read more.
Phytocompounds have been used in medicine for decades owing to their potential in anti-inflammatory applications. However, major difficulties in achieving sustained delivery of phyto-based drugs are related to their low solubility and cell penetration, and high instability. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in the pharmaceutical sector. This review focuses on the recent advances in nanocarrier-mediated drug delivery of bioactive molecules of plant origin in the field of anti-inflammatory research. In particular, special attention is paid to the relationship between structure and properties of the nanocarrier and phytodrug release behavior. Full article
(This article belongs to the Special Issue Natural Anti-Inflammatory Agents)
Show Figures

Graphical abstract

21 pages, 3918 KiB  
Article
De Novo Assembly, Annotation, and Characterization of Root Transcriptomes of Three Caladium Cultivars with a Focus on Necrotrophic Pathogen Resistance/Defense-Related Genes
by Zhe Cao and Zhanao Deng
Int. J. Mol. Sci. 2017, 18(4), 712; https://doi.org/10.3390/ijms18040712 - 27 Mar 2017
Cited by 20 | Viewed by 5750
Abstract
Roots are vital to plant survival and crop yield, yet few efforts have been made to characterize the expressed genes in the roots of non-model plants (root transcriptomes). This study was conducted to sequence, assemble, annotate, and characterize the root transcriptomes of three [...] Read more.
Roots are vital to plant survival and crop yield, yet few efforts have been made to characterize the expressed genes in the roots of non-model plants (root transcriptomes). This study was conducted to sequence, assemble, annotate, and characterize the root transcriptomes of three caladium cultivars (Caladium × hortulanum) using RNA-Seq. The caladium cultivars used in this study have different levels of resistance to Pythium myriotylum, the most damaging necrotrophic pathogen to caladium roots. Forty-six to 61 million clean reads were obtained for each caladium root transcriptome. De novo assembly of the reads resulted in approximately 130,000 unigenes. Based on bioinformatic analysis, 71,825 (52.3%) caladium unigenes were annotated for putative functions, 48,417 (67.4%) and 31,417 (72.7%) were assigned to Gene Ontology (GO) and Clusters of Orthologous Groups (COG), respectively, and 46,406 (64.6%) unigenes were assigned to 128 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. A total of 4518 distinct unigenes were observed only in Pythium-resistant “Candidum” roots, of which 98 seemed to be involved in disease resistance and defense responses. In addition, 28,837 simple sequence repeat sites and 44,628 single nucleotide polymorphism sites were identified among the three caladium cultivars. These root transcriptome data will be valuable for further genetic improvement of caladium and related aroids. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

21 pages, 2654 KiB  
Article
“Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents
by Cassandra Breil, Maryline Abert Vian, Thomas Zemb, Werner Kunz and Farid Chemat
Int. J. Mol. Sci. 2017, 18(4), 708; https://doi.org/10.3390/ijms18040708 - 27 Mar 2017
Cited by 257 | Viewed by 28108
Abstract
Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are “gold standards” for the analysis of extracted lipids. Based on [...] Read more.
Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are “gold standards” for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid–liquid extraction of yeast (Yarrowia lipolytica IFP29) and subsequent liquid–liquid partition—the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid–liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol–chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

10 pages, 211 KiB  
Article
The Balloon-Based Manometry Evaluation of Swallowing in Patients with Amyotrophic Lateral Sclerosis
by Jerzy Tomik, Barbara Tomik, Sebastian Gajec, Piotr Ceranowicz, Małgorzata Pihut, Rafał Olszanecki, Paweł Stręk and Jacek Składzień
Int. J. Mol. Sci. 2017, 18(4), 707; https://doi.org/10.3390/ijms18040707 - 27 Mar 2017
Cited by 6 | Viewed by 4414
Abstract
The aim of the study was to analyse the disturbances of the oro-pharyngeal swallowing phase of dysphagia in amyotrophic lateral sclerosis (ALS) patients with the use of specific manometric measurements and to evaluate their plausible association with the duration of the disease. Seventeen [...] Read more.
The aim of the study was to analyse the disturbances of the oro-pharyngeal swallowing phase of dysphagia in amyotrophic lateral sclerosis (ALS) patients with the use of specific manometric measurements and to evaluate their plausible association with the duration of the disease. Seventeen patients with ALS were evaluated with manometric examinations of the oral and pharyngeal part of the gastrointestinal tract. Tests were carried out by using the oesophageal balloon-based method with four balloon transducers located 5 cm away from each other. The following manometric parameters were analysed: the base of tongue contraction (BTC) and the upper oesophageal sphincter pressure (UESP), and the hypopharyngeal suction pump (HSP) as well as the oro-pharyngeal, pharyngeal and hypopharyngeal transit time and average pharyngeal bolus velocity (oropharyngeal transit time (OTT), pharyngeal transit time (PTT), hypopharyngeal transit time (HTT) and average pharyngeal bolus velocity (APBV), respectively). Manomatric examinations during swallowing in patients with ALS showed significant weakness of BTC, a decrease of HSP and a decrease of the velocity of bolus transit inside the pharynx which were particularly marked between the first and the third examination. Manometric examinations of the oro-pharyngeal part of the gastrointestinal tract are useful and supportive methods in the analysis of swallowing disturbances in ALS patients. Full article
(This article belongs to the Special Issue Musculoskeletal Diseases Therapy)
13 pages, 6273 KiB  
Article
An Amylase-Like Protein, AmyD, Is the Major Negative Regulator for α-Glucan Synthesis in Aspergillus nidulans during the Asexual Life Cycle
by Xiaoxiao He, Shengnan Li and Susan Kaminskyj
Int. J. Mol. Sci. 2017, 18(4), 695; https://doi.org/10.3390/ijms18040695 - 27 Mar 2017
Cited by 13 | Viewed by 5080
Abstract
α-Glucan affects fungal cell–cell interactions and is important for the virulence of pathogenic fungi. Interfering with production of α-glucan could help to prevent fungal infection. In our previous study, we reported that an amylase-like protein, AmyD, could repress α-glucan accumulation in Aspergillus nidulans [...] Read more.
α-Glucan affects fungal cell–cell interactions and is important for the virulence of pathogenic fungi. Interfering with production of α-glucan could help to prevent fungal infection. In our previous study, we reported that an amylase-like protein, AmyD, could repress α-glucan accumulation in Aspergillus nidulans. However, the underlying molecular mechanism was not clear. Here, we examined the localization of AmyD and found it was a membrane-associated protein. We studied AmyD function in α-glucan degradation, as well as with other predicted amylase-like proteins and three annotated α-glucanases. AmyC and AmyE share a substantial sequence identity with AmyD, however, neither affects α-glucan synthesis. In contrast, AgnB and MutA (but not AgnE) are functional α-glucanases that also repress α-glucan accumulation. Nevertheless, the functions of AmyD and these glucanases were independent from each other. The dynamics of α-glucan accumulation showed different patterns between the AmyD overexpression strain and the α-glucanase overexpression strains, suggesting AmyD may not be involved in the α-glucan degradation process. These results suggest the function of AmyD is to directly suppress α-glucan synthesis, but not to facilitate its degradation. Full article
(This article belongs to the Special Issue Glucan: New Perspectives on Biochemistry and Application)
Show Figures

Graphical abstract

16 pages, 16482 KiB  
Article
Transplantation of Menstrual Blood-Derived Mesenchymal Stem Cells Promotes the Repair of LPS-Induced Acute Lung Injury
by Bingyu Xiang, Lu Chen, Xiaojun Wang, Yongjia Zhao, Yanling Wang and Charlie Xiang
Int. J. Mol. Sci. 2017, 18(4), 689; https://doi.org/10.3390/ijms18040689 - 27 Mar 2017
Cited by 116 | Viewed by 11247
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high morbidity and mortality. Menstrual blood-derived stem cells (MenSCs) have been shown to be good therapeutic tools in diseases such as ovarian failure and cardiac fibrosis. However, relevant studies of [...] Read more.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high morbidity and mortality. Menstrual blood-derived stem cells (MenSCs) have been shown to be good therapeutic tools in diseases such as ovarian failure and cardiac fibrosis. However, relevant studies of MenSCs in ALI have not yet proceeded. We hypothesized that MenSC could attenuate the inflammation in lipopolysaccharide (LPS)-induced ALI and promote the repair of damaged lung. ALI model was induced by LPS in C57 mice, and saline or MenSCs were administered via tail vein after four hours. The MenSCs were subsequently detected in the lungs by a live imaging system. The MenSCs not only improved pulmonary microvascular permeability and attenuated histopathological damage, but also mediated the downregulation of IL-1β and the upregulation of IL-10 in bronchoalveolar lavage fluid (BALF) and the damaged lung. Immunohistochemistry revealed the increased expression of proliferating cell nuclear antigen (PCNA) and the reduced expression of caspase-3 indicating the beneficial effect of MenSCs. Keratinocyte growth factor (KGF) was also upregulated after MenSCs administrated. As shown using transwell co-culture, the MenSCs also could improve the viability of BEAS-2B cells and inhibit LPS-induced apoptosis. These findings suggest that MenSC-based therapies could be promising strategies for treating ALI. Full article
(This article belongs to the Special Issue Stem Cell Research)
Show Figures

Graphical abstract

17 pages, 523 KiB  
Article
OPRM1 c.118A>G Polymorphism and Duration of Morphine Treatment Associated with Morphine Doses and Quality-of-Life in Palliative Cancer Pain Settings
by Aline Hajj, Lucine Halepian, Nada El Osta, Georges Chahine, Joseph Kattan and Lydia Rabbaa Khabbaz
Int. J. Mol. Sci. 2017, 18(4), 669; https://doi.org/10.3390/ijms18040669 - 27 Mar 2017
Cited by 30 | Viewed by 7252
Abstract
Despite increased attention on assessment and management, pain remains the most persistent symptom in patients with cancer, in particular in end-of-life settings, with detrimental impact on their quality-of-life (QOL). We conducted this study to evaluate the added value of determining some genetic and [...] Read more.
Despite increased attention on assessment and management, pain remains the most persistent symptom in patients with cancer, in particular in end-of-life settings, with detrimental impact on their quality-of-life (QOL). We conducted this study to evaluate the added value of determining some genetic and non-genetic factors to optimize cancer pain treatment. Eighty-nine patients were included in the study for the evaluation of palliative cancer pain management. The regression analysis showed that age, OPRM1 single nucleotide polymorphism (SNP), as well as the duration of morphine treatment were significantly associated with morphine doses at 24 h (given by infusion pump; p = 0.043, 0.029, and <0.001, respectively). The mean doses of morphine decreased with age but increased with the duration of morphine treatment. In addition, patients with AG genotype c.118A>G OPRM1 needed a higher dose of morphine than AA patients. Moreover, metastases, OPRM1 SNP, age, and gender were significantly associated with the QOL in our population. In particular, AA patients for OPRM1 SNP had significantly lower cognitive function than AG patients, a result not previously reported in the literature. These findings could help increase the effectiveness of morphine treatment and enhance the QOL of patients in regards to personalized medicine. Full article
(This article belongs to the Special Issue Pharmacogenetics and Personalized Medicine 2016)
Show Figures

Graphical abstract

13 pages, 1556 KiB  
Article
Functional Analysis of the Ser149/Thr149 Variants of Human Aspartylglucosaminidase and Optimization of the Coding Sequence for Protein Production
by Antje Banning, Jan F. König, Steven J. Gray and Ritva Tikkanen
Int. J. Mol. Sci. 2017, 18(4), 706; https://doi.org/10.3390/ijms18040706 - 26 Mar 2017
Cited by 4 | Viewed by 5199
Abstract
Aspartylglucosaminidase (AGA) is a lysosomal hydrolase that participates in the breakdown of glycoproteins. Defects in the AGA gene result in a lysosomal storage disorder, aspartylglucosaminuria (AGU), that manifests mainly as progressive mental retardation. A number of AGU missense mutations have been identified that [...] Read more.
Aspartylglucosaminidase (AGA) is a lysosomal hydrolase that participates in the breakdown of glycoproteins. Defects in the AGA gene result in a lysosomal storage disorder, aspartylglucosaminuria (AGU), that manifests mainly as progressive mental retardation. A number of AGU missense mutations have been identified that result in reduced AGA activity. Human variants that contain either Ser or Thr in position 149 have been described, but it is unknown if this affects AGA processing or activity. Here, we have directly compared the Ser149/Thr149 variants of AGA and show that they do not differ in terms of relative specific activity or processing. Therefore, Thr149 AGA, which is the rare variant, can be considered as a neutral or benign variant. Furthermore, we have here produced codon-optimized versions of these two variants and show that they are expressed at significantly higher levels than AGA with the natural codon-usage. Since optimal AGA expression is of vital importance for both gene therapy and enzyme replacement, our data suggest that use of codon-optimized AGA may be beneficial for these therapy options. Full article
Show Figures

Graphical abstract

39 pages, 2116 KiB  
Review
Specificity in Legume-Rhizobia Symbioses
by Mitchell Andrews and Morag E. Andrews
Int. J. Mol. Sci. 2017, 18(4), 705; https://doi.org/10.3390/ijms18040705 - 26 Mar 2017
Cited by 264 | Viewed by 17326
Abstract
Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes [...] Read more.
Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga). Specificity for rhizobial species/symbiovar appears to hold for Galega officinalis (Neorhizobium galegeae sv. officinalis), Galega orientalis (Neorhizobium galegeae sv. orientalis), Hedysarum coronarium (Rhizobium sullae), Medicago laciniata (Ensifer meliloti sv. medicaginis), Medicago rigiduloides (Ensifer meliloti sv. rigiduloides) and Trifolium ambiguum (Rhizobium leguminosarum sv. trifolii). Lateral gene transfer of specific symbiosis genes within rhizobial genera is an important mechanism allowing legumes to form symbioses with rhizobia adapted to particular soils. Strain-specific legume rhizobia symbioses can develop in particular habitats. Full article
(This article belongs to the Special Issue Molecular Signals in Nodulation Control)
Show Figures

Figure 1