15 pages, 1829 KiB  
Review
Flavonoids as Cytokine Modulators: A Possible Therapy for Inflammation-Related Diseases
by Nayely Leyva-López, Erick P. Gutierrez-Grijalva, Dulce L. Ambriz-Perez and J. Basilio Heredia
Int. J. Mol. Sci. 2016, 17(6), 921; https://doi.org/10.3390/ijms17060921 - 9 Jun 2016
Cited by 288 | Viewed by 16267
Abstract
High levels of cytokines, such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-6, are associated with chronic diseases like rheumatoid arthritis, asthma, atherosclerosis, Alzheimer’s disease and cancer; therefore cytokine inhibition might be an important target for the treatment of these diseases. Most [...] Read more.
High levels of cytokines, such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-6, are associated with chronic diseases like rheumatoid arthritis, asthma, atherosclerosis, Alzheimer’s disease and cancer; therefore cytokine inhibition might be an important target for the treatment of these diseases. Most drugs used to alleviate some inflammation-related symptoms act by inhibiting cyclooxygenases activity or by blocking cytokine receptors. Nevertheless, these drugs have secondary effects when used on a long-term basis. It has been mentioned that flavonoids, namely quercetin, apigenin and luteolin, reduce cytokine expression and secretion. In this regard, flavonoids may have therapeutical potential in the treatment of inflammation-related diseases as cytokine modulators. This review is focused on current research about the effect of flavonoids on cytokine modulation and the description of the way these compounds exert their effect. Full article
(This article belongs to the Special Issue Advances in Molecular Research of Functional and Nutraceutical Food)
Show Figures

Graphical abstract

15 pages, 2274 KiB  
Article
Prolonged Morphine Exposure Induces Increased Firm Adhesion in an in Vitro Model of the Blood–Brain Barrier
by Marianne Strazza, Vanessa Pirrone, Brian Wigdahl, Will Dampier, Wei Lin, Rui Feng, Monique E. Maubert, Babette Weksler, Ignacio A. Romero, Pierre-Olivier Couraud and Michael R. Nonnemacher
Int. J. Mol. Sci. 2016, 17(6), 916; https://doi.org/10.3390/ijms17060916 - 9 Jun 2016
Cited by 19 | Viewed by 7105
Abstract
The blood–brain barrier (BBB) has been defined as a critically important protective barrier that is involved in providing essential biologic, physiologic, and immunologic separation between the central nervous system (CNS) and the periphery. Insults to the BBB can cause overall barrier damage or [...] Read more.
The blood–brain barrier (BBB) has been defined as a critically important protective barrier that is involved in providing essential biologic, physiologic, and immunologic separation between the central nervous system (CNS) and the periphery. Insults to the BBB can cause overall barrier damage or deregulation of the careful homeostasis maintained between the periphery and the CNS. These insults can, therefore, yield numerous phenotypes including increased overall permeability, interendothelial gap formation, alterations in cytokine and chemokine secretion, and accelerated cellular passage. The current studies expose the human brain microvascular endothelial cell line, hCMEC/D3, to prolonged morphine exposure and aim to uncover the mechanisms underlying alterations in barrier function in vitro. These studies show alterations in the mRNA and protein levels of the cellular adhesion molecules (CAMs) intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and activated leukocyte cell adhesion molecule that correlate with an increased firm adhesion of the CD3+ subpopulation of peripheral blood mononuclear cells (PBMCs). Overall, these studies suggest that prolonged morphine exposure may result in increased cell migration into the CNS, which may accelerate pathological processes in many diseases that involve the BBB. Full article
Show Figures

Graphical abstract

11 pages, 1684 KiB  
Article
The Interactions of CPP–ACP with Saliva
by Noorjahan Laila Huq, Helen Myroforidis, Keith J. Cross, David P. Stanton, Paul D. Veith, Brent R. Ward and Eric C. Reynolds
Int. J. Mol. Sci. 2016, 17(6), 915; https://doi.org/10.3390/ijms17060915 - 9 Jun 2016
Cited by 30 | Viewed by 10608
Abstract
The repair of early dental caries lesions has been demonstrated by the application of the remineralisation technology based on casein phosphopeptide-stabilised amorphous calcium phosphate complexes (CPP–ACP). These complexes consist of an amorphous calcium phosphate mineral phase stabilised and encapsulated by the self-assembly of [...] Read more.
The repair of early dental caries lesions has been demonstrated by the application of the remineralisation technology based on casein phosphopeptide-stabilised amorphous calcium phosphate complexes (CPP–ACP). These complexes consist of an amorphous calcium phosphate mineral phase stabilised and encapsulated by the self-assembly of milk-derived phosphopeptides. During topical application of CPP–ACP complexes in the oral cavity, the CPP encounters the enamel pellicle consisting of salivary proteins and peptides. However the interactions of the CPP with the enamel salivary pellicle are not known. The studies presented here reveal that the predominant peptides of CPP–ACP complexes do interact with specific salivary proteins and peptides of the enamel pellicle, and provide a mechanism by which the CPP–ACP complexes are localised at the tooth surface to promote remineralisation. Full article
(This article belongs to the Special Issue Applied Bioinorganic Chemistry and Selected Papers from 13th ISABC)
Show Figures

Graphical abstract

19 pages, 8849 KiB  
Article
In Silico Prediction of Cytochrome P450-Drug Interaction: QSARs for CYP3A4 and CYP2C9
by Serena Nembri, Francesca Grisoni, Viviana Consonni and Roberto Todeschini
Int. J. Mol. Sci. 2016, 17(6), 914; https://doi.org/10.3390/ijms17060914 - 9 Jun 2016
Cited by 60 | Viewed by 8514
Abstract
Cytochromes P450 (CYP) are the main actors in the oxidation of xenobiotics and play a crucial role in drug safety, persistence, bioactivation, and drug-drug/food-drug interaction. This work aims to develop Quantitative Structure-Activity Relationship (QSAR) models to predict the drug interaction with two of [...] Read more.
Cytochromes P450 (CYP) are the main actors in the oxidation of xenobiotics and play a crucial role in drug safety, persistence, bioactivation, and drug-drug/food-drug interaction. This work aims to develop Quantitative Structure-Activity Relationship (QSAR) models to predict the drug interaction with two of the most important CYP isoforms, namely 2C9 and 3A4. The presented models are calibrated on 9122 drug-like compounds, using three different modelling approaches and two types of molecular description (classical molecular descriptors and binary fingerprints). For each isoform, three classification models are presented, based on a different approach and with different advantages: (1) a very simple and interpretable classification tree; (2) a local (k-Nearest Neighbor) model based classical descriptors and; (3) a model based on a recently proposed local classifier (N-Nearest Neighbor) on binary fingerprints. The salient features of the work are (1) the thorough model validation and the applicability domain assessment; (2) the descriptor interpretation, which highlighted the crucial aspects of P450-drug interaction; and (3) the consensus aggregation of models, which largely increased the prediction accuracy. Full article
Show Figures

Graphical abstract

22 pages, 6516 KiB  
Article
Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization
by Sanjukta Chakrabarti, Colin J. Barrow, Rupinder K. Kanwar, Venkata Ramana and Jagat R. Kanwar
Int. J. Mol. Sci. 2016, 17(6), 913; https://doi.org/10.3390/ijms17060913 - 9 Jun 2016
Cited by 34 | Viewed by 11226
Abstract
Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1–D3)-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture [...] Read more.
Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1–D3)-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities. Full article
(This article belongs to the Section Bioinorganic Chemistry)
Show Figures

Graphical abstract

11 pages, 397 KiB  
Article
Elevated Preoperative Serum Alanine Aminotransferase/Aspartate Aminotransferase (ALT/AST) Ratio Is Associated with Better Prognosis in Patients Undergoing Curative Treatment for Gastric Adenocarcinoma
by Shu-Lin Chen, Jian-Pei Li, Lin-Fang Li, Tao Zeng and Xia He
Int. J. Mol. Sci. 2016, 17(6), 911; https://doi.org/10.3390/ijms17060911 - 9 Jun 2016
Cited by 47 | Viewed by 7282
Abstract
The level of anine aminotransferase/aspartate aminotransferase (ALT/AST) ratio in the serum was often used to assess liver injury. Whether the ALT/AST ratio (LSR) was associated with prognosis for gastric adenocarcinoma (GA) has not been reported in the literature. Our aim was to investigate [...] Read more.
The level of anine aminotransferase/aspartate aminotransferase (ALT/AST) ratio in the serum was often used to assess liver injury. Whether the ALT/AST ratio (LSR) was associated with prognosis for gastric adenocarcinoma (GA) has not been reported in the literature. Our aim was to investigate the prognostic value of the preoperative LSR in patients with GA. A retrospective study was performed in 231 patients with GA undergoing curative resection. The medical records collected include clinical information and laboratory results. We investigated the correlations between the preoperative LSR and overall survival (OS). Survival analysis was conducted with the Kaplan–Meier method, and Cox regression analysis was used to determine significant independent prognostic factors for predicting survival. A p value of <0.05 was considered to be statistically significant. A total of 231 patients were finally enrolled. The median overall survival was 47 months. Multivariate analysis indicated that preoperative LSR was an independent prognostic factor in GA. Patients with LSR ≤ 0.80 had a greater risk of death than those with LSR > 0.80. The LSR was independently associated with OS in patients with GA (hazard ratio: 0.610; 95% confidence interval: 0.388–0.958; p = 0.032), along with tumor stages (hazard ratio: 3.118; 95% confidence interval: 2.044–4.756; p < 0.001) and distant metastases (hazard ratio: 1.957; 95% confidence interval: 1.119–3.422; p = 0.019). Our study first established a connection between the preoperative LSR and patients undergoing curative resection for GA, suggesting that LSR was a simple, inexpensive, and easily measurable marker as a prognostic factor, and may help to identify high-risk patients for treatment decisions. Full article
(This article belongs to the Special Issue Liquid Biopsy for Clinical Application)
Show Figures

Graphical abstract

13 pages, 5461 KiB  
Article
The CLC-2 Chloride Channel Modulates ECM Synthesis, Differentiation, and Migration of Human Conjunctival Fibroblasts via the PI3K/Akt Signaling Pathway
by Lixia Sun, Yaru Dong, Jing Zhao, Yuan Yin and Yajuan Zheng
Int. J. Mol. Sci. 2016, 17(6), 910; https://doi.org/10.3390/ijms17060910 - 9 Jun 2016
Cited by 23 | Viewed by 6533
Abstract
Recent evidence suggests that chloride channels are critical for cell proliferation, migration, and differentiation. We examined the effects of transforming growth factor (TGF)-β1 on chloride channel expression and associations with human conjunctival fibroblast (HConF) biology. To investigate the potential role of chloride channel [...] Read more.
Recent evidence suggests that chloride channels are critical for cell proliferation, migration, and differentiation. We examined the effects of transforming growth factor (TGF)-β1 on chloride channel expression and associations with human conjunctival fibroblast (HConF) biology. To investigate the potential role of chloride channel (CLC)-2 in migration, transition to myofibroblasts and extracellular matrix (ECM) synthesis of HconF, a small interfering RNA (siRNA) approach was applied. TGF-β1-induced migration and transition of fibroblasts to myofibroblasts characterized by α-smooth muscle actin (α-SMA) expression, supported by increased endogenous expression of CLC-2 protein and mRNA transcripts. ECM (collagen I and fibronectin) synthesis in HConF was enhanced by TGF-β1. CLC-2 siRNA treatment reduced TGF-β1-induced cell migration, transition of fibroblasts to myofibroblasts, and ECM synthesis of HConF. CLC-2 siRNA treatment in the presence of TGF-β1 inhibited phosphorylation of PI3K and Akt in HConF. These findings demonstrate that CLC-2 chloride channels are important for TGF-β1-induced migration, differentiation, and ECM synthesis via PI3K/Akt signaling in HConF. Full article
(This article belongs to the Special Issue Kinase Signal Transduction)
Show Figures

Graphical abstract

12 pages, 2347 KiB  
Article
A New Route of Fucoidan Immobilization on Low Density Polyethylene and Its Blood Compatibility and Anticoagulation Activity
by Kadir Ozaltin, Marián Lehocký, Petr Humpolíček, Jana Pelková and Petr Sáha
Int. J. Mol. Sci. 2016, 17(6), 908; https://doi.org/10.3390/ijms17060908 - 9 Jun 2016
Cited by 25 | Viewed by 6632
Abstract
Beside biomaterials’ bulk properties, their surface properties are equally important to control interfacial biocompatibility. However, due to the inadequate interaction with tissue, they may cause foreign body reaction. Moreover, surface induced thrombosis can occur when biomaterials are used for blood containing applications. Surface [...] Read more.
Beside biomaterials’ bulk properties, their surface properties are equally important to control interfacial biocompatibility. However, due to the inadequate interaction with tissue, they may cause foreign body reaction. Moreover, surface induced thrombosis can occur when biomaterials are used for blood containing applications. Surface modification of the biomaterials can bring enhanced surface properties in biomedical applications. Sulfated polysaccharide coatings can be used to avoid surface induced thrombosis which may cause vascular occlusion (blocking the blood flow by blood clot), which results in serious health problems. Naturally occurring heparin is one of the sulfated polysaccharides most commonly used as an anticoagulant, but its long term usage causes hemorrhage. Marine sourced sulfated polysaccharide fucoidan is an alternative anticoagulant without the hemorrhage drawback. Heparin and fucoidan immobilization onto a low density polyethylene surface after functionalization by plasma has been studied. Surface energy was demonstrated by water contact angle test and chemical characterizations were carried out by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Surface morphology was monitored by scanning electron microscope and atomic force microscope. Finally, their anticoagulation activity was examined for prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT). Full article
(This article belongs to the Special Issue Frontiers of Marine Biomaterials)
Show Figures

Graphical abstract

11 pages, 1610 KiB  
Article
High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity
by Blanca Iglesias-Figueroa, Norberto Valdiviezo-Godina, Tania Siqueiros-Cendón, Sugey Sinagawa-García, Sigifredo Arévalo-Gallegos and Quintín Rascón-Cruz
Int. J. Mol. Sci. 2016, 17(6), 902; https://doi.org/10.3390/ijms17060902 - 9 Jun 2016
Cited by 46 | Viewed by 12173
Abstract
In this study, bovine lactoferrin (bLf), an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant [...] Read more.
In this study, bovine lactoferrin (bLf), an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant bovine lactoferrin (rbLf) in Pichia pastoris. After Bach fermentation and purification by molecular exclusion, we obtained an expression yield of 3.5 g/L of rbLf. rbLf and predominantly pepsin-digested rbLf (rbLfcin) demonstrated antibacterial activity against Escherichia coli (E. coli) BL21DE3, Staphylococcus aureus (S. aureus) FRI137, and, in a smaller percentage, Pseudomonas aeruginosa (Ps. Aeruginosa) ATCC 27833. The successful expression and characterization of functional rbLf expressed in Pichia pastoris opens a prospect for the development of natural antimicrobial agents produced recombinantly. Full article
(This article belongs to the Special Issue Advances in Molecular Research of Functional and Nutraceutical Food)
Show Figures

Graphical abstract

17 pages, 5274 KiB  
Article
Protective Effect of Ginsenoside Rg1 on Hematopoietic Stem/Progenitor Cells through Attenuating Oxidative Stress and the Wnt/β-Catenin Signaling Pathway in a Mouse Model of d-Galactose-induced Aging
by Jing Li, Dachuan Cai, Xin Yao, Yanyan Zhang, Linbo Chen, Pengwei Jing, Lu Wang and Yaping Wang
Int. J. Mol. Sci. 2016, 17(6), 849; https://doi.org/10.3390/ijms17060849 - 9 Jun 2016
Cited by 78 | Viewed by 8105
Abstract
Stem cell senescence is an important and current hypothesis accounting for organismal aging, especially the hematopoietic stem cell (HSC). Ginsenoside Rg1 is the main active pharmaceutical ingredient of ginseng, which is a traditional Chinese medicine. This study explored the protective effect of ginsenoside [...] Read more.
Stem cell senescence is an important and current hypothesis accounting for organismal aging, especially the hematopoietic stem cell (HSC). Ginsenoside Rg1 is the main active pharmaceutical ingredient of ginseng, which is a traditional Chinese medicine. This study explored the protective effect of ginsenoside Rg1 on Sca-1+ hematopoietic stem/progenitor cells (HSC/HPCs) in a mouse model of d-galactose-induced aging. The mimetic aging mouse model was induced by continuous injection of d-gal for 42 days, and the C57BL/6 mice were respectively treated with ginsenoside Rg1, Vitamin E or normal saline after 7 days of d-gal injection. Compared with those in the d-gal administration alone group, ginsenoside Rg1 protected Sca-1+ HSC/HPCs by decreasing SA-β-Gal and enhancing the colony forming unit-mixture (CFU-Mix), and adjusting oxidative stress indices like reactive oxygen species (ROS), total anti-oxidant (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and malondialdehyde (MDA). In addition, ginsenoside Rg1 decreased β-catenin and c-Myc mRNA expression and enhanced the phosphorylation of GSK-3β. Moreover, ginsenoside Rg1 down-regulated advanced glycation end products (AGEs), 4-hydroxynonenal (4-HNE), phospho-histone H2A.X (r-H2A.X), 8-OHdG, p16Ink4a, Rb, p21Cip1/Waf1 and p53 in senescent Sca-1+ HSC/HPCs. Our findings indicated that ginsenoside Rg1 can improve the resistance of Sca-1+ HSC/HPCs in a mouse model of d-galactose-induced aging through the suppression of oxidative stress and excessive activation of the Wnt/β-catenin signaling pathway, and reduction of DNA damage response, p16Ink4a-Rb and p53-p21Cip1/Waf1 signaling. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

18 pages, 774 KiB  
Review
Reconstruction and Application of Protein–Protein Interaction Network
by Tong Hao, Wei Peng, Qian Wang, Bin Wang and Jinsheng Sun
Int. J. Mol. Sci. 2016, 17(6), 907; https://doi.org/10.3390/ijms17060907 - 8 Jun 2016
Cited by 68 | Viewed by 11534
Abstract
The protein-protein interaction network (PIN) is a useful tool for systematic investigation of the complex biological activities in the cell. With the increasing interests on the proteome-wide interaction networks, PINs have been reconstructed for many species, including virus, bacteria, plants, animals, and humans. [...] Read more.
The protein-protein interaction network (PIN) is a useful tool for systematic investigation of the complex biological activities in the cell. With the increasing interests on the proteome-wide interaction networks, PINs have been reconstructed for many species, including virus, bacteria, plants, animals, and humans. With the development of biological techniques, the reconstruction methods of PIN are further improved. PIN has gradually penetrated many fields in biological research. In this work we systematically reviewed the development of PIN in the past fifteen years, with respect to its reconstruction and application of function annotation, subsystem investigation, evolution analysis, hub protein analysis, and regulation mechanism analysis. Due to the significant role of PIN in the in-depth exploration of biological process mechanisms, PIN will be preferred by more and more researchers for the systematic study of the protein systems in various kinds of organisms. Full article
(This article belongs to the Special Issue Proteins and Protein-Ligand Interactions)
Show Figures

Graphical abstract

10 pages, 1886 KiB  
Article
The Effects of Magnesium Ions on the Enzymatic Synthesis of Ligand-Bearing Artificial DNA by Template-Independent Polymerase
by Yusuke Takezawa, Teruki Kobayashi and Mitsuhiko Shionoya
Int. J. Mol. Sci. 2016, 17(6), 906; https://doi.org/10.3390/ijms17060906 - 8 Jun 2016
Cited by 21 | Viewed by 8961
Abstract
A metal-mediated base pair, composed of two ligand-bearing nucleotides and a bridging metal ion, is one of the most promising components for developing DNA-based functional molecules. We have recently reported an enzymatic method to synthesize hydroxypyridone (H)-type ligand-bearing artificial DNA strands. [...] Read more.
A metal-mediated base pair, composed of two ligand-bearing nucleotides and a bridging metal ion, is one of the most promising components for developing DNA-based functional molecules. We have recently reported an enzymatic method to synthesize hydroxypyridone (H)-type ligand-bearing artificial DNA strands. Terminal deoxynucleotidyl transferase (TdT), a template-independent DNA polymerase, was found to oligomerize H nucleotides to afford ligand-bearing DNAs, which were subsequently hybridized through copper-mediated base pairing (H–CuIIH). In this study, we investigated the effects of a metal cofactor, MgII ion, on the TdT-catalyzed polymerization of H nucleotides. At a high MgII concentration (10 mM), the reaction was halted after several H nucleotides were appended. In contrast, at lower MgII concentrations, H nucleotides were further appended to the H-tailed product to afford longer ligand-bearing DNA strands. An electrophoresis mobility shift assay revealed that the binding affinity of TdT to the H-tailed DNAs depends on the MgII concentration. In the presence of excess MgII ions, TdT did not bind to the H-tailed strands; thus, further elongation was impeded. This is possibly because the interaction with MgII ions caused folding of the H-tailed strands into unfavorable secondary structures. This finding provides an insight into the enzymatic synthesis of longer ligand-bearing DNA strands. Full article
(This article belongs to the Special Issue Applied Bioinorganic Chemistry and Selected Papers from 13th ISABC)
Show Figures

Graphical abstract

9 pages, 2107 KiB  
Article
p38 MAPK Inhibitor Insufficiently Attenuates HSC Senescence Administered Long-Term after 6 Gy Total Body Irradiation in Mice
by Lu Lu, Yue-Ying Wang, Jun-Ling Zhang, De-Guan Li and Ai-Min Meng
Int. J. Mol. Sci. 2016, 17(6), 905; https://doi.org/10.3390/ijms17060905 - 8 Jun 2016
Cited by 24 | Viewed by 9936
Abstract
Senescent hematopoietic stem cells (HSCs) accumulate with age and exposure to stress, such as total-body irradiation (TBI), which may cause long-term myelosuppression in the clinic. However, the methods available for long-term myelosuppression remain limited. Previous studies have demonstrated that sustained p38 mitogen-activated protein [...] Read more.
Senescent hematopoietic stem cells (HSCs) accumulate with age and exposure to stress, such as total-body irradiation (TBI), which may cause long-term myelosuppression in the clinic. However, the methods available for long-term myelosuppression remain limited. Previous studies have demonstrated that sustained p38 mitogen-activated protein kinases (p38 MAPK) activation in HSCs following exposure to TBI in mice and the administration of its inhibitor twenty-four hours after TBI may partially prevent long-term myelosuppression. However, long-term myelosuppression is latent and identified long after the administration of radiation. In this study, we investigated the effects of SB203580 (a small molecule inhibitor of p38 MAPK) on long-term myelosuppression induced by TBI. Mice with hematopoietic injury were injected intraperitoneally with SB203580 every other day five times beginning 70 days after 6 Gy of 137Cs γ ray TBI. Our results at 80 days demonstrated that SB203580 did not significantly improve the TBI-induced long-term reduction of peripheral blood cell and bone marrow nucleated cell (BMNC) counts, or defects in hematopoietic progenitor cells (HPCs) and HSC clonogenic function. SB203580 reduced reactive oxygen species (ROS) production and p-p38 expression; however, SB203580 had no effect on p16 expression in the HSCs of mice. In conclusion, these findings suggest that treatment with SB203580 70 days after TBI in mice inhibits the ROS-p38 oxidative stress pathway; however, it has no therapeutic effect on long-term myelosuppression induced by TBI. Full article
(This article belongs to the Special Issue Kinase Signal Transduction)
Show Figures

Graphical abstract

31 pages, 334 KiB  
Review
Neuroprotective and Therapeutic Strategies against Parkinson’s Disease: Recent Perspectives
by Sumit Sarkar, James Raymick and Syed Imam
Int. J. Mol. Sci. 2016, 17(6), 904; https://doi.org/10.3390/ijms17060904 - 8 Jun 2016
Cited by 174 | Viewed by 15619
Abstract
Parkinsonism is a progressive motor disease that affects 1.5 million Americans and is the second most common neurodegenerative disease after Alzheimer’s. Typical neuropathological features of Parkinson’s disease (PD) include degeneration of dopaminergic neurons located in the pars compacta of the substantia nigra that [...] Read more.
Parkinsonism is a progressive motor disease that affects 1.5 million Americans and is the second most common neurodegenerative disease after Alzheimer’s. Typical neuropathological features of Parkinson’s disease (PD) include degeneration of dopaminergic neurons located in the pars compacta of the substantia nigra that project to the striatum (nigro-striatal pathway) and depositions of cytoplasmic fibrillary inclusions (Lewy bodies) which contain ubiquitin and α-synuclein. The cardinal motor signs of PD are tremors, rigidity, slow movement (bradykinesia), poor balance, and difficulty in walking (Parkinsonian gait). In addition to motor symptoms, non-motor symptoms that include autonomic and psychiatric as well as cognitive impairments are pressing issues that need to be addressed. Several different mechanisms play an important role in generation of Lewy bodies; endoplasmic reticulum (ER) stress induced unfolded proteins, neuroinflammation and eventual loss of dopaminergic neurons in the substantia nigra of mid brain in PD. Moreover, these diverse processes that result in PD make modeling of the disease and evaluation of therapeutics against this devastating disease difficult. Here, we will discuss diverse mechanisms that are involved in PD, neuroprotective and therapeutic strategies currently in clinical trial or in preclinical stages, and impart views about strategies that are promising to mitigate PD pathology. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2016)
Show Figures

Graphical abstract

13 pages, 222 KiB  
Article
A High Diet Quality Based on Dietary Recommendations Is Not Associated with Lower Incidence of Type 2 Diabetes in the Malmö Diet and Cancer Cohort
by Emmanuel Mandalazi, Isabel Drake, Elisabet Wirfält, Marju Orho-Melander and Emily Sonestedt
Int. J. Mol. Sci. 2016, 17(6), 901; https://doi.org/10.3390/ijms17060901 - 8 Jun 2016
Cited by 21 | Viewed by 6187
Abstract
A high diet quality index based on Swedish nutrition recommendations has previously been associated with reduced risk of cardiovascular disease and mortality in the Malmö Diet and Cancer (MDC) cohort. The aim of the present study was to investigate whether this diet quality [...] Read more.
A high diet quality index based on Swedish nutrition recommendations has previously been associated with reduced risk of cardiovascular disease and mortality in the Malmö Diet and Cancer (MDC) cohort. The aim of the present study was to investigate whether this diet quality index was associated with the risk for type 2 diabetes. Of 26,868 participants (44–74 years) in the MDC cohort study, 3838 type 2 diabetes cases were identified from registers during 17 years of follow-up. A diet quality index (from a modified diet history method) was constructed based on adherence to the recommended intakes of saturated fat, polyunsaturated fat, fish, fiber, fruit and vegetables, and sucrose. After adjusting for potential confounders, we observed no significant association between the diet quality index and type 2 diabetes risk. The HR for the highest vs. lowest index category was 1.06 (95% CI: 0.94, 1.20; p-trend = 0.56). Because of the protective associations shown for cardiovascular disease and mortality, the specific dietary components that were chosen to represent adherence to the recommendations may be less applicable to type 2 diabetes risk. Full article
(This article belongs to the Special Issue Advances in Nutritional Epidemiology)