16 pages, 3835 KiB  
Article
Confinement Effects on the Magnetic Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrachloroferrate(III)
by Christopher M. Burba and Hai-Chou Chang
Molecules 2022, 27(17), 5591; https://doi.org/10.3390/molecules27175591 - 30 Aug 2022
Cited by 6 | Viewed by 1972
Abstract
Confinement effects for the magnetoresponsive ionic liquid 1-ethyl-3-methylimidazolium tetrachloroferrate(III), [C2mim]FeCl4, are explored from thermal, spectroscopic, and magnetic points of view. Placing the ionic liquid inside SBA-15 mesoporous silica produces a significant impact on the material’s response to temperature, pressure, [...] Read more.
Confinement effects for the magnetoresponsive ionic liquid 1-ethyl-3-methylimidazolium tetrachloroferrate(III), [C2mim]FeCl4, are explored from thermal, spectroscopic, and magnetic points of view. Placing the ionic liquid inside SBA-15 mesoporous silica produces a significant impact on the material’s response to temperature, pressure, and magnetic fields. Isobaric thermal experiments show melting point reductions that depend on the pore diameter of the mesopores. The confinement-induced reductions in phase transition temperature follow the Gibbs–Thomson equation if a 1.60 nm non-freezable interfacial layer is postulated to exist along the pore wall. Isothermal pressure-dependent infrared spectroscopy reveals a similar modification to phase transition pressures, with the confined ionic liquid requiring higher pressures to trigger phase transformation than the unconfined system. Confinement also impedes ion transport as activation energies are elevated when the ionic liquid is placed inside the mesopores. Finally, the antiferromagnetic ordering that characterizes unconfined [C2mim]FeCl4 is suppressed when the ionic liquid is confined in 5.39-nm pores. Thus, confinement provides another avenue for manipulating the magnetic properties of this compound. Full article
(This article belongs to the Special Issue Ionic Liquids: Green Solvents for the Future)
Show Figures

Figure 1

17 pages, 3528 KiB  
Article
Phenolic Profile, Antioxidant and Enzyme Inhibitory Activities of Leaves from Two Cassia and Two Senna Species
by Haifa A. A. Omer, Giovanni Caprioli, Doaa Abouelenein, Ahmed M. Mustafa, Abdullahi Ibrahim Uba, Gunes Ak, Refiye Beyza Ozturk, Gokhan Zengin and Sakina Yagi
Molecules 2022, 27(17), 5590; https://doi.org/10.3390/molecules27175590 - 30 Aug 2022
Cited by 36 | Viewed by 5557
Abstract
Several species within the genera Cassia or Senna have a treasure of traditional medicines worldwide and can be a promising source of bioactive molecules. The objective of the present study was to evaluate the phenolic content and antioxidant and enzyme inhibition activities of [...] Read more.
Several species within the genera Cassia or Senna have a treasure of traditional medicines worldwide and can be a promising source of bioactive molecules. The objective of the present study was to evaluate the phenolic content and antioxidant and enzyme inhibition activities of leaf methanolic extracts of C. fistula L., C. grandis L., S. alexandrina Mill., and S. italica Mill. The two Cassia spp. contained higher total polyphenolic content (42.23–49.75 mg GAE/g) than the two Senna spp., and C. fistula had significantly (p ˂ 0.05) the highest concentration. On the other hand, the Senna spp. showed higher total flavonoid content (41.47–59.24 mg rutin equivalent per g of extract) than that found in the two Cassia spp., and S. alexandrina significantly (p ˂ 0.05) accumulated the highest amount. HPLC–MS/MS analysis of 38 selected bioactive compounds showed that the majority of compounds were identified in the four species, but with sharp variations in their concentrations. C. fistula was dominated by epicatechin (8928.75 µg/g), C. grandis by kaempferol-3-glucoside (47,360.04 µg/g), while rutin was the major compound in S. italica (17,285.02 µg/g) and S. alexandrina (6381.85). The methanolic extracts of the two Cassia species exerted significantly (p ˂ 0.05) higher antiradical activity, metal reducing capacity, and total antioxidant activity than that recorded from the two Senna species’ methanolic extracts, and C. fistula displayed significantly (p ˂ 0.05) the highest values. C. grandis significantly (p ˂ 0.05) exhibited the highest metal chelating power. The results of the enzyme inhibition activity showed that the four species possessed anti-AChE activity, and the highest value, but not significantly (p ≥ 0.05) different from those obtained by the two Cassia spp., was exerted by S. alexandrina. The Cassia spp. exhibited significantly (p ˂ 0.05) higher anti-BChE and anti-Tyr properties than the Senna spp., and C. grandise revealed significantly (p ˂ 0.05) the highest values. C. grandise revealed significantly (p ˂ 0.05) the highest α- amylase inhibition, while the four species had more or less the same effect against the α-glucosidase enzyme. Multivariate analysis and in silico studies showed that many of the identified phenols may play key roles as antioxidant and enzyme inhibitory properties. Thus, these Cassia and Senna species could be a promising source of natural bioactive agents with beneficial effects for human health. Full article
Show Figures

Figure 1

17 pages, 2767 KiB  
Article
A Comparative Loading and Release Study of Vancomycin from a Green Mesoporous Silica
by Georgiana Dolete, Bogdan Purcăreanu, Dan Eduard Mihaiescu, Denisa Ficai, Ovidiu-Cristian Oprea, Alexandra Cătălina Bîrcă, Cristina Chircov, Bogdan Ștefan Vasile, Gabriel Vasilievici, Anton Ficai and Ecaterina Andronescu
Molecules 2022, 27(17), 5589; https://doi.org/10.3390/molecules27175589 - 30 Aug 2022
Cited by 12 | Viewed by 3129
Abstract
Since its first use as a drug delivery system, mesoporous silica has proven to be a surprisingly efficient vehicle due to its porous structure. Unfortunately, most synthesis methods are based on using large amounts of surfactants, which are then removed by solvent extraction [...] Read more.
Since its first use as a drug delivery system, mesoporous silica has proven to be a surprisingly efficient vehicle due to its porous structure. Unfortunately, most synthesis methods are based on using large amounts of surfactants, which are then removed by solvent extraction or heat treatment, leading to an undesired environmental impact because of the generated by-products. Hence, in the present study, we followed the synthesis of a silica material with a wormhole-like pore arrangement, using two FDA-approved substances as templates, namely Tween-20 and starch. As far as we know, it is the first study using the Tween-20/starch combo as a template for mesoporous silica synthesis. Furthermore, we investigated whether the obtained material using this novel synthesis had any potential in using it as a DDS. The material was further analyzed by XRD, TEM, FT-IR, N2 adsorption/desorption, and DLS to investigate its physicochemical features. Vancomycin was selected as the active molecule based on the extensive research engaged towards improving its bioavailability for oral delivery. The drug was loaded onto the material by using three different approaches, assuming its full retention in the final system. Thermal analysis confirmed the successful loading of vancomycin by all means, and pore volume significantly decreased upon loading, especially in the case of the vacuum-assisted method. All methods showed a slower release rate compared to the same amount of the pure drug. Loadings by physical mixing and solvent evaporation released the whole amount of the drug in 140 min, and the material loaded by the vacuum-assisted method released only 68.2% over the same period of time, leading us to conclude that vancomycin was adsorbed deeper inside the pores. The kinetic release of the three systems followed the Higuchi model for the samples loaded by physical mixing and vacuum-assisted procedures, while the solvent evaporation loading method was in compliance with the first-order model. Full article
(This article belongs to the Special Issue Drug Delivery Effects of Nanocarriers)
Show Figures

Figure 1

33 pages, 7656 KiB  
Review
Multimodal Imaging and Phototherapy of Cancer and Bacterial Infection by Graphene and Related Nanocomposites
by Ganesh Gollavelli, Anil V. Ghule and Yong-Chien Ling
Molecules 2022, 27(17), 5588; https://doi.org/10.3390/molecules27175588 - 30 Aug 2022
Cited by 15 | Viewed by 3299
Abstract
The advancements in nanotechnology and nanomedicine are projected to solve many glitches in medicine, especially in the fields of cancer and infectious diseases, which are ranked in the top five most dangerous deadly diseases worldwide by the WHO. There is great concern to [...] Read more.
The advancements in nanotechnology and nanomedicine are projected to solve many glitches in medicine, especially in the fields of cancer and infectious diseases, which are ranked in the top five most dangerous deadly diseases worldwide by the WHO. There is great concern to eradicate these problems with accurate diagnosis and therapies. Among many developed therapeutic models, near infra-red mediated phototherapy is a non-invasive technique used to invade many persistent tumors and bacterial infections with less inflammation compared with traditional therapeutic models such as radiation therapy, chemotherapy, and surgeries. Herein, we firstly summarize the up-to-date research on graphene phototheranostics for a better understanding of this field of research. We discuss the preparation and functionalization of graphene nanomaterials with various biocompatible components, such as metals, metal oxides, polymers, photosensitizers, and drugs, through covalent and noncovalent approaches. The multifunctional nanographene is used to diagnose the disease with confocal laser scanning microscopy, magnetic resonance imaging computed tomography, positron emission tomography, photoacoustic imaging, Raman, and ToF-SMIS to visualize inside the biological system for imaging-guided therapy are discussed. Further, treatment of disease by photothermal and photodynamic therapies against different cancers and bacterial infections are carefully conferred herein along with challenges and future perspectives. Full article
(This article belongs to the Special Issue Functional Nanomaterials in Biomedicine)
Show Figures

Figure 1

16 pages, 1341 KiB  
Review
Silver Nanoparticles and Its Mechanistic Insight for Chronic Wound Healing: Review on Recent Progress
by Manoj Singh, Vanita Thakur, Vikas Kumar, Mayank Raj, Shivani Gupta, Nisha Devi, Sushil Kumar Upadhyay, Markéta Macho, Avik Banerjee, Daniela Ewe and Kumar Saurav
Molecules 2022, 27(17), 5587; https://doi.org/10.3390/molecules27175587 - 30 Aug 2022
Cited by 50 | Viewed by 6306
Abstract
Wounds are structural and functional disruptions of skin that occur because of trauma, surgery, acute illness, or chronic disease conditions. Chronic wounds are caused by a breakdown in the finely coordinated cascade of events that occurs during healing. Wound healing is a long [...] Read more.
Wounds are structural and functional disruptions of skin that occur because of trauma, surgery, acute illness, or chronic disease conditions. Chronic wounds are caused by a breakdown in the finely coordinated cascade of events that occurs during healing. Wound healing is a long process that split into at least three continuous and overlapping processes: an inflammatory response, a proliferative phase, and finally the tissue remodeling. Therefore, these processes are extensively studied to develop novel therapeutics in order to achieve maximum recovery with minimum scarring. Several growth hormones and cytokines secreted at the site of lesions tightly regulates the healing processes. The traditional approach for wound management has been represented by topical treatments. Metal nanoparticles (e.g., silver, gold and zinc) are increasingly being employed in dermatology due to their favorable effects on healing, as well as in treating and preventing secondary bacterial infections. In the current review, a brief introduction on traditional would healing approach is provided, followed by focus on the potential of wound dressing therapeutic techniques functionalized with Ag-NPs. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications)
Show Figures

Graphical abstract

14 pages, 2379 KiB  
Systematic Review
Green Template-Mediated Synthesis of Biowaste Nano-Hydroxyapatite: A Systematic Literature Review
by Ferli Septi Irwansyah, Atiek Rostika Noviyanti, Diana Rakhmawaty Eddy and Risdiana Risdiana
Molecules 2022, 27(17), 5586; https://doi.org/10.3390/molecules27175586 - 30 Aug 2022
Cited by 18 | Viewed by 5233
Abstract
Hydroxyapatite (HA) is a well-known calcium phosphate ingredient comparable to human bone tissue. HA has exciting applications in many fields, especially biomedical applications, such as drug delivery, osteogenesis, and dental implants. Unfortunately, hydroxyapatite-based nanomaterials are synthesized by conventional methods using reagents that are [...] Read more.
Hydroxyapatite (HA) is a well-known calcium phosphate ingredient comparable to human bone tissue. HA has exciting applications in many fields, especially biomedical applications, such as drug delivery, osteogenesis, and dental implants. Unfortunately, hydroxyapatite-based nanomaterials are synthesized by conventional methods using reagents that are not environmentally friendly and are expensive. Therefore, extensive efforts have been made to establish a simple, efficient, and green method to form nano-hydroxyapatite (NHA) biofunctional materials with significant biocompatibility, bioactivity, and mechanical strength. Several types of biowaste have proven to be a source of calcium in forming HA, including using chicken eggshells, fish bones, and beef bones. This systematic literature review discusses the possibility of replacing synthetic chemical reagents, synthetic pathways, and toxic capping agents with a green template to synthesize NHA. This review also shed insight on the simple green manufacture of NHA with controlled shape and size. Full article
(This article belongs to the Topic Green and Sustainable Chemistry)
Show Figures

Figure 1

14 pages, 355 KiB  
Review
The Molecular Weaponry Produced by the Bacterium Hafnia alvei in Foods
by José Ramos-Vivas, Olga Tapia, María Elexpuru-Zabaleta, Kilian Tutusaus Pifarre, Yasmany Armas Diaz, Maurizio Battino and Francesca Giampieri
Molecules 2022, 27(17), 5585; https://doi.org/10.3390/molecules27175585 - 30 Aug 2022
Cited by 14 | Viewed by 15437
Abstract
Hafnia alvei is receiving increasing attention from both a medical and veterinary point of view, but the diversity of molecules it produces has made the interest in this bacterium extend to the field of probiotics, the microbiota, and above all, to its presence [...] Read more.
Hafnia alvei is receiving increasing attention from both a medical and veterinary point of view, but the diversity of molecules it produces has made the interest in this bacterium extend to the field of probiotics, the microbiota, and above all, to its presence and action on consumer foods. The production of Acyl Homoserine Lactones (AHLs), a type of quorum-sensing (QS) signaling molecule, is the most often-studied chemical signaling molecule in Gram-negative bacteria. H. alvei can use this communication mechanism to promote the expression of certain enzymatic activities in fermented foods, where this bacterium is frequently present. H. alvei also produces a series of molecules involved in the modification of the organoleptic properties of different products, especially cheeses, where it shares space with other microorganisms. Although some strains of this species are implicated in infections in humans, many produce antibacterial compounds, such as bacteriocins, that inhibit the growth of true pathogens, so the characterization of these molecules could be very interesting from the point of view of clinical medicine and the food industry. Lastly, in some cases, H. alvei is responsible for the production of biogenic amines or other compounds of special interest in food health. In this article, we will review the most interesting molecules that produce the H. alvei strains and will discuss some of their properties, both from the point of view of their biological activity on other microorganisms and the properties of different food matrices in which this bacterium usually thrives. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Natural Products Chemistry)
40 pages, 2067 KiB  
Review
Trends and Technological Advancements in the Possible Food Applications of Spirulina and Their Health Benefits: A Review
by Nawal K. Z. AlFadhly, Nawfal Alhelfi, Ammar B. Altemimi, Deepak Kumar Verma, Francesco Cacciola and Arunaksharan Narayanankutty
Molecules 2022, 27(17), 5584; https://doi.org/10.3390/molecules27175584 - 30 Aug 2022
Cited by 126 | Viewed by 20891
Abstract
Spirulina is a kind of blue-green algae (BGA) that is multicellular, filamentous, and prokaryotic. It is also known as a cyanobacterium. It is classified within the phylum known as blue-green algae. Despite the fact that it includes a high concentration of nutrients, such [...] Read more.
Spirulina is a kind of blue-green algae (BGA) that is multicellular, filamentous, and prokaryotic. It is also known as a cyanobacterium. It is classified within the phylum known as blue-green algae. Despite the fact that it includes a high concentration of nutrients, such as proteins, vitamins, minerals, and fatty acids—in particular, the necessary omega-3 fatty acids and omega-6 fatty acids—the percentage of total fat and cholesterol that can be found in these algae is substantially lower when compared to other food sources. This is the case even if the percentage of total fat that can be found in these algae is also significantly lower. In addition to this, spirulina has a high concentration of bioactive compounds, such as phenols, phycocyanin pigment, and polysaccharides, which all take part in a number of biological activities, such as antioxidant and anti-inflammatory activity. As a result of this, spirulina has found its way into the formulation of a great number of medicinal foods, functional foods, and nutritional supplements. Therefore, this article makes an effort to shed light on spirulina, its nutritional value as a result of its chemical composition, and its applications to some food product formulations, such as dairy products, snacks, cookies, and pasta, that are necessary at an industrial level in the food industry all over the world. In addition, this article supports the idea of incorporating it into the food sector, both from a nutritional and health perspective, as it offers numerous advantages. Full article
(This article belongs to the Special Issue Bioactive Compounds from Functional Foods)
Show Figures

Figure 1

9 pages, 1360 KiB  
Article
1-Propyl-4(5)-Methylimidazole Isomers for Temperature Swing Solvent Extraction
by Shuai Qian, Lauren M. Ward, Luke S. Rakers, Steven T. Weinman and Jason E. Bara
Molecules 2022, 27(17), 5583; https://doi.org/10.3390/molecules27175583 - 30 Aug 2022
Cited by 1 | Viewed by 2671
Abstract
Temperature swing solvent extraction (TSSE) utilizes an amine solvent with temperature-dependent water solubility to dissolve water at a lower temperature to concentrate or crystallize the brine and the phases are separated. Then, the water in solvent mixture is heated to reduce water solubility [...] Read more.
Temperature swing solvent extraction (TSSE) utilizes an amine solvent with temperature-dependent water solubility to dissolve water at a lower temperature to concentrate or crystallize the brine and the phases are separated. Then, the water in solvent mixture is heated to reduce water solubility and cause phase separation between the solvent and water. The solvent and de-salted water phases are separated, and the regenerated solvent can be recycled. Issues with current TSSE solvents include the high solvent in water solubility and the high solvent volatility. This project used the highly tunable platform molecule imidazole to create two 1-butylimidazole isomers, specifically 1-propyl-4(5)-methylimidazole, to test their effectiveness for TSSE. The imidazoles take in more water than their current state-of-the-art counterparts, but do not desalinate the product water and dissolve in water at higher concentrations. Thus, while imidazoles make intriguing candidates for TSSE, further work is needed to understand how to design imidazoles that will be useful for TSSE applications. Full article
Show Figures

Figure 1

13 pages, 4218 KiB  
Article
Ni(II) Ions May Target the Entire Melatonin Biosynthesis Pathway—A Plausible Mechanism of Nickel Toxicity
by Nina E. Wezynfeld, Arkadiusz M. Bonna, Dawid Płonka, Wojciech Bal and Tomasz Frączyk
Molecules 2022, 27(17), 5582; https://doi.org/10.3390/molecules27175582 - 30 Aug 2022
Cited by 6 | Viewed by 2101
Abstract
Nickel is toxic to humans. Its compounds are carcinogenic. Furthermore, nickel allergy is a severe health problem that affects approximately 10–20% of humans. The mechanism by which these conditions develop remains unclear, but it may involve the cleavage of specific proteins by nickel [...] Read more.
Nickel is toxic to humans. Its compounds are carcinogenic. Furthermore, nickel allergy is a severe health problem that affects approximately 10–20% of humans. The mechanism by which these conditions develop remains unclear, but it may involve the cleavage of specific proteins by nickel ions. Ni(II) ions cleave the peptide bond preceding the Ser/Thr-Xaa-His sequence. Such sequences are present in all four enzymes of the melatonin biosynthesis pathway, i.e., tryptophan 5-hydroxylase 1, aromatic-l-amino-acid decarboxylase, serotonin N-acetyltransferase, and acetylserotonin O-methyltransferase. Moreover, fragments prone to Ni(II) are exposed on surfaces of these proteins. Our results indicate that all four studied fragments undergo cleavage within tens of hours at pH 8.2 and 37 °C, corresponding with the conditions in the mitochondrial matrix. Since melatonin, a potent antioxidant and anti-inflammatory agent, is synthesized within the mitochondria of virtually all human cells, depleting its supply may be detrimental, e.g., by raising the oxidative stress level. Intriguingly, Ni(II) ions have been shown to mimic hypoxia through the stabilization of HIF-1α protein, but melatonin prevents the action of HIF-1α. Considering all this, the enzymes of the melatonin biosynthesis pathway seem to be a toxicological target for Ni(II) ions. Full article
(This article belongs to the Special Issue The Role of Metal Ions in Bio-Inorganic Chemistry)
Show Figures

Figure 1

13 pages, 1911 KiB  
Article
Underestimation about the Contribution of Nitrate Reducers to Iron Cycling Indicated by Enterobacter Strain
by Ming-Jun Li, Meng-Yun Wei, Xiao-Ting Fan and Guo-Wei Zhou
Molecules 2022, 27(17), 5581; https://doi.org/10.3390/molecules27175581 - 30 Aug 2022
Cited by 8 | Viewed by 2272
Abstract
Nitrate-reducing iron(II) oxidation (NRFO) has been intensively reported in various bacteria. Iron(II) oxidation is found to be involved in both enzymatic and chemical reactions in nitrate-reducing Fe(II)-oxidizing microorganisms (NRFOMs). However, little is known about the relative contribution of biotic and abiotic reactions to [...] Read more.
Nitrate-reducing iron(II) oxidation (NRFO) has been intensively reported in various bacteria. Iron(II) oxidation is found to be involved in both enzymatic and chemical reactions in nitrate-reducing Fe(II)-oxidizing microorganisms (NRFOMs). However, little is known about the relative contribution of biotic and abiotic reactions to iron(II) oxidation for the common nitrate reducers during the NRFO process. In this study, the typical nitrate reducers, four Enterobacter strains E. hormaechei, E. tabaci, E. mori and E. asburiae, were utilized as the model microorganisms. The comparison of the kinetics of nitrate, iron(II) and nitrite and N2O production in setups with and without iron(II) indicates a mixture of enzymatic and abiotic oxidation of iron(II) in all four Enterobacter strains. It was estimated that 22−29% of total oxidized iron(II) was coupled to microbial nitrate reduction by E. hormaechei, E. tabaci, E. mori, and E. asburiae. Enterobacter strains displayed an metabolic inactivity with heavy iron(III) encrustation on the cell surface in the NRFOmedium during days of incubation. Moreover, both respiratory and periplasmic nitrate-reducing genes are encoded by genomes of Enterobacter strains, suggesting that cell encrustation may occur with periplasmic iron(III) oxide precipitation as well as the surface iron(II) mineral coating for nitrate reducers. Overall, this study clarified the potential role of nitrate reducers in the biochemical cycling of iron under anoxic conditions, in turn, re-shaping their activity during denitrification because of cell encrustation with iron(III) minerals. Full article
Show Figures

Figure 1

25 pages, 1925 KiB  
Review
Bacterial Cellulose as a Versatile Biomaterial for Wound Dressing Application
by Julia Didier Pedrosa de Amorim, Claudio José Galdino da Silva Junior, Alexandre D’Lamare Maia de Medeiros, Helenise Almeida do Nascimento, Mirella Sarubbo, Thiago Pettrus Maia de Medeiros, Andréa Fernanda de Santana Costa and Leonie Asfora Sarubbo
Molecules 2022, 27(17), 5580; https://doi.org/10.3390/molecules27175580 - 30 Aug 2022
Cited by 62 | Viewed by 7654
Abstract
Chronic ulcers are among the main causes of morbidity and mortality due to the high probability of infection and sepsis and therefore exert a significant impact on public health resources. Numerous types of dressings are used for the treatment of skin ulcers-each with [...] Read more.
Chronic ulcers are among the main causes of morbidity and mortality due to the high probability of infection and sepsis and therefore exert a significant impact on public health resources. Numerous types of dressings are used for the treatment of skin ulcers-each with different advantages and disadvantages. Bacterial cellulose (BC) has received enormous interest in the cosmetic, pharmaceutical, and medical fields due to its biological, physical, and mechanical characteristics, which enable the creation of polymer composites and blends with broad applications. In the medical field, BC was at first used in wound dressings, tissue regeneration, and artificial blood vessels. This material is suitable for treating various skin diseases due its considerable fluid retention and medication loading properties. BC membranes are used as a temporary dressing for skin treatments due to their excellent fit to the body, reduction in pain, and acceleration of epithelial regeneration. BC-based composites and blends have been evaluated and synthesized both in vitro and in vivo to create an ideal microenvironment for wound healing. This review describes different methods of producing and handling BC for use in the medical field and highlights the qualities of BC in detail with emphasis on biomedical reports that demonstrate its utility. Moreover, it gives an account of biomedical applications, especially for tissue engineering and wound dressing materials reported until date. This review also includes patents of BC applied as a wound dressing material. Full article
(This article belongs to the Special Issue Recent Advances in Microbial Polymers and Pigments)
Show Figures

Figure 1

17 pages, 537 KiB  
Article
Phenolic Profile, Antioxidant, Anti-Enzymatic and Cytotoxic Activity of the Fruits and Roots of Eleutherococcus senticosus (Rupr. et Maxim.) Maxim
by Filip Graczyk, Jakub Gębalski, Anna Makuch-Kocka, Dorota Gawenda-Kempczyńska, Aneta A. Ptaszyńska, Sebastian Grzyb, Anna Bogucka-Kocka and Daniel Załuski
Molecules 2022, 27(17), 5579; https://doi.org/10.3390/molecules27175579 - 30 Aug 2022
Cited by 16 | Viewed by 3357
Abstract
Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. is well-known for its adaptogenic properties in traditional Eastern medicine. It has been categorized as an endangered species due to the over-exploitation of the roots. As a result, alternatives must be found, including the usage of renewable [...] Read more.
Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. is well-known for its adaptogenic properties in traditional Eastern medicine. It has been categorized as an endangered species due to the over-exploitation of the roots. As a result, alternatives must be found, including the usage of renewable aerial parts such as fruits. The goal of this research was to determine the phenolic compounds and the enzymatic, antioxidant, and cytotoxic activities of the intractum gained from the E. senticosus fruits and the mixture of chloroform-methanol roots extract with naringenin (3:7:5). The obtained results showed, that the intractum contained 1.02 mg/g ext. of polyphenols, 0.30 mg/g ext. of flavonoids, and 0.19 mg/g ext. of phenolic acids. In turn, the mixture of chloroform-methanol roots extract with naringenin (3:7:5) contained 159.27 mg/g ext. of polyphenols, 137.47 mg/g ext. of flavonoids, and 79.99 mg/g ext. of phenolic acids. Regarding the anti-enzymatic assay, the IC50 values for tyrosinase and hyaluronidase were equal to 586.83 and 217.44 [μg/mL] for the intractum, and 162.56 and 44.80 [μg/mL] for the mixture, respectively. Both preparations have possessed significant antioxidant activity in the ABTS, DPPH, and ferrozine tests. No cytotoxic effect on the FaDu and HEP G2 cancer cell lines was observed. Our findings support the traditional use of fruits and roots. Moreover, the results indicate also that adaptogens are rather nontoxic for normal and cancer cells, which corresponds with some hypotheses on adaptogens activity. Full article
(This article belongs to the Special Issue Natural Antioxidants in Foods and Medicinal Plants)
Show Figures

Figure 1

11 pages, 1607 KiB  
Article
Synthesis and Kinase Inhibitory Potencies of Pyrazolo[3,4-g]isoquinolines
by Mathilde Defois, Chloé Rémondin, Béatrice Josselin, Lionel Nauton, Vincent Théry, Fabrice Anizon, Sandrine Ruchaud, Francis Giraud and Pascale Moreau
Molecules 2022, 27(17), 5578; https://doi.org/10.3390/molecules27175578 - 30 Aug 2022
Cited by 4 | Viewed by 1872
Abstract
A new series of pyrazolo[3,4-g]isoquinoline derivatives, diversely substituted at the 4- or 8-position, were synthesized. The results of the kinase inhibitory potency study demonstrated that the introduction of a bromine atom at the 8-position was detrimental to Haspin inhibition, while the [...] Read more.
A new series of pyrazolo[3,4-g]isoquinoline derivatives, diversely substituted at the 4- or 8-position, were synthesized. The results of the kinase inhibitory potency study demonstrated that the introduction of a bromine atom at the 8-position was detrimental to Haspin inhibition, while the introduction of an alkyl group at the 4-position led to a modification of the kinase inhibition profiles. Altogether, the results obtained demonstrated that new pyrazolo[3,4-g]isoquinolines represent a novel family of kinase inhibitors with various selectivity profiles. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

11 pages, 752 KiB  
Review
Molecular Shield for Protection of Buckwheat Plants from UV-B Radiation
by Ivan Kreft, Alena Vollmannová, Judita Lidiková, Janette Musilová, Mateja Germ, Aleksandra Golob, Blanka Vombergar, Darja Kocjan Ačko and Zlata Luthar
Molecules 2022, 27(17), 5577; https://doi.org/10.3390/molecules27175577 - 30 Aug 2022
Cited by 12 | Viewed by 3292
Abstract
Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) and common buckwheat (Fagopyrum esculentum Moench) are adapted to growing in harsh conditions of high altitudes. Ultraviolet radiation at high altitudes strongly impacts plant growth and development. Under the influence of ultraviolet radiation, protecting substances [...] Read more.
Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) and common buckwheat (Fagopyrum esculentum Moench) are adapted to growing in harsh conditions of high altitudes. Ultraviolet radiation at high altitudes strongly impacts plant growth and development. Under the influence of ultraviolet radiation, protecting substances are synthesized in plants. The synthesis of UV-B defense metabolites is genetically conditioned, and their quantity depends on the intensity of the ultraviolet radiation to which the plants and plant parts are exposed. These substances include flavonoids, and especially rutin. Other substances with aromatic rings of six carbon atoms have a similar function, including fagopyrin, the metabolite specific for buckwheat. Defensive substances are formed in the leaves and flowers of common and Tartary buckwheat, up to about the same concentration in both species. In comparison, the concentration of rutin in the grain of Tartary buckwheat is much higher than in common buckwheat. Flavonoids also have other functions in plants so that they can protect them from pests and diseases. After crushing the grains, rutin is exposed to contact with the molecules of rutin-degrading enzymes. In an environment with the necessary humidity, rutin is turned into bitter quercetin under the action of rutin-degrading enzymes. This bitterness has a deterrent effect against pests. Moreover, flavonoids have important functions in human nutrition to prevent several chronic diseases, including obesity, cardiovascular diseases, gallstone formation, and hypertension. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Sources II)
Show Figures

Figure 1