17 pages, 4829 KiB  
Article
A Multi-Omics Analysis Reveals Anti-Osteoporosis Mechanism of Four Components from Crude and Salt-Processed Achyranthes bidentata Blume in Ovariectomized Rats
by Yuwen Yin, Fei Zhu, Meiling Pan, Jiaqi Bao, Qing Liu and Yi Tao
Molecules 2022, 27(15), 5012; https://doi.org/10.3390/molecules27155012 - 6 Aug 2022
Cited by 15 | Viewed by 3507
Abstract
The root of Achyranthes bidentata Blume (AB) is a well-known traditional Chinese medicine for treating osteoporosis. Plenty of studies focused on the pharmacological mechanism of the whole extract; however, the contribution of different components to the anti-osteoporosis effect remains unknown. The aim of [...] Read more.
The root of Achyranthes bidentata Blume (AB) is a well-known traditional Chinese medicine for treating osteoporosis. Plenty of studies focused on the pharmacological mechanism of the whole extract; however, the contribution of different components to the anti-osteoporosis effect remains unknown. The aim of this study is to explore the anti-osteoporosis mechanism of different components of crude and salt-processed AB under the guidance of network pharmacology, metabolomics, and microbiomics. First, network pharmacology analysis was applied to constructing the compound-target-disease network of AB to provide a holistic view. Second, the anti-osteoporosis effects of the four components were evaluated in female Wistar rats. The subjects were divided into a normal group, a model group, a 17α-estradiol (E2)-treated group, a polysaccharide-component-treated groups, and a polysaccharide-knockout-component-treated groups. All the serum, urine, and feces samples of the six groups were collected after 16 weeks of treatment. Biochemical and microcomputed tomography (μCT) parameters were also acquired. Coupled with orthogonal partial least-squares discrimination analysis, one dimensional nuclear magnetic resonance (NMR) was used to monitor serum metabolic alterations. A total of twenty-two biomarkers, including lipids, amino acids, polyunsaturated fatty acids, glucose, and so on were identified for the different components-treated groups. Through pathway analysis, it is indicated that glyoxylate and dicarboxylate metabolism, glycine, serine, and threonine metabolism, alanine, aspartate, and glutamate metabolism, d-glutamine, and d-glutamate metabolism were the major intervened pathways. Levels of these biomarkers shifted away from the model group and were restored to normal after treatment with the four components. In addition, 16S rDNA sequencing demonstrated that the abundance of Anaerofilum, Rothia, and Turicibacter bacteria was positively correlated with an anti-osteoporosis effect, whereas the abundance of Oscillospira was negatively correlated. The osteoprotective effect of the polysaccharide components of crude and salt-processed AB is related to the regulation of the abundance of these gut microbiota. Full article
Show Figures

Figure 1

8 pages, 736 KiB  
Article
Synthesis of Halopyrazole Matrine Derivatives and Their Insecticidal and Fungicidal Activities
by Xingan Cheng, Huiqing He, Fangyun Dong, Chunbao Charles Xu, Hanhui Zhang, Zhanmei Liu, Xiaojing Lv, Yuehua Wu, Xuhong Jiang and Xiangjing Qin
Molecules 2022, 27(15), 4974; https://doi.org/10.3390/molecules27154974 - 5 Aug 2022
Cited by 15 | Viewed by 2702
Abstract
Matrine is a traditional botanical pesticide with a broad-spectrum biological activity that is widely applied in agriculture. Halopyrazole groups are successfully introduced to the C13 of matrine to synthesize eight new derivatives with a yield of 78–87%. The insecticidal activity results show that [...] Read more.
Matrine is a traditional botanical pesticide with a broad-spectrum biological activity that is widely applied in agriculture. Halopyrazole groups are successfully introduced to the C13 of matrine to synthesize eight new derivatives with a yield of 78–87%. The insecticidal activity results show that the introduction of halopyrazole groups can significantly improve the insecticidal activity of matrine on Plutella xylostella, Mythimna separata and Spodoptera frugiperda with a corrected mortality rate of 100%, which is 25–65% higher than matrine. The fungicidal activity results indicate that derivatives have a high inhibitory effect on Ceratobasidium cornigerum, Cibberella sanbinetti, Gibberrlla zeae and Collectot tichum gloeosporioides. Thereinto, 4-Cl-Pyr-Mat has the best result, with an inhibition rate of 23–33% higher than that of matrine. Therefore, the introduction of halogenated pyrazole groups can improve the agricultural activity of matrine. Full article
Show Figures

Graphical abstract

21 pages, 4104 KiB  
Article
The Effect of Nano-ZnO on Seeds Germination Parameters of Different Tomatoes (Solanum lycopersicum L.) Cultivars
by Katarzyna Włodarczyk and Beata Smolińska
Molecules 2022, 27(15), 4963; https://doi.org/10.3390/molecules27154963 - 4 Aug 2022
Cited by 15 | Viewed by 2655
Abstract
The agriculture sector faces numerous problems. One of the beforementioned problems relates to the proper crop plants’ fertilization. The conventional bulk fertilizers are becoming less effective and have a negative impact on the environment. Nanomaterials such as zinc oxide nanoparticles (ZnO NPs) are [...] Read more.
The agriculture sector faces numerous problems. One of the beforementioned problems relates to the proper crop plants’ fertilization. The conventional bulk fertilizers are becoming less effective and have a negative impact on the environment. Nanomaterials such as zinc oxide nanoparticles (ZnO NPs) are widely used in various sectors such as medicine or electronics. Several studies indicate that nano-ZnO may likewise be considered as a potential nanofertilizer. In present research, an attempt was made to study the influence of two different sized ZnO NPs (<50 nm and <100 nm) on the seed germination of chosen tomato (Solanum lycopersicum) cultivars. The seeds of three cherry tomato cultivars were placed on a Petri dish with the NPs suspensions (0, 50, 150, and 250 mg/L) in order to examine the influence on germination parameters at a certain size of NPs and at a chosen concentration. In addition, within this study, we verified that the implicated conditions have the exact impact on all three cultivars. The obtained results indicate that all the factors affect the seed sprouting, however, this process mainly depends on the type of tomato cultivar and the size of the used nanoparticles. The parameter of the germination percentage (GP) was the only of the assumed factors that did not influence it significantly. Nevertheless, the values of other examined parameters such as the MGT, GRI, CVG, or VI depend strongly on all assumed features including the type of chosen cultivar. The obtained results vary significantly between all cultivars which indicates that the plants from the same family may require different conditions for optimal growth. In this research the <50 nm ZnO nanoparticles had more beneficial influence on sprouting parameters then parallelly used <100 nm ZnO nanoparticles. Full article
Show Figures

Figure 1

13 pages, 329 KiB  
Article
Oleanane-Type Triterpene Conjugates with 1H-1,2,3-Triazole Possessing of Fungicidal Activity
by Zili Chen, Yu Jiang, Chen Xu, Xiangyu Sun, Chao Ma, Zihao Xia and Hanqing Zhao
Molecules 2022, 27(15), 4928; https://doi.org/10.3390/molecules27154928 - 2 Aug 2022
Cited by 15 | Viewed by 2056
Abstract
The triazole pesticide is an organic nitrogen-containing heterocyclic compound with a 1,2,3-Triazole ring. In order to develop a potential glucosamine-6-phosphate synthase (GlmS) inhibitor bactericide, 18 triazole-derivative compounds were synthesized efficiently. In addition, these compounds have not been reported in the literature. The structure [...] Read more.
The triazole pesticide is an organic nitrogen-containing heterocyclic compound with a 1,2,3-Triazole ring. In order to develop a potential glucosamine-6-phosphate synthase (GlmS) inhibitor bactericide, 18 triazole-derivative compounds were synthesized efficiently. In addition, these compounds have not been reported in the literature. The structure was confirmed by high-resolution mass spectrometry (HRMS), 1H NMR and 13C NMR. The potential use of the most promising derivatives has been investigated by testing their antifungal activity and enzyme inhibitory activity, revealing inhibitory activities in the low micromolar range. Among them, the antifungal effects of compounds 1e, 1f, 1g, 2e, 2f, and 2g on Sclerotinia sclerotiorum were particularly significant, all of which were above 83%. These compounds will be further investigated as potential antifungal lead compounds. Their structure–activity relationships are discussed based on the effects of substituted phenyl groups on compounds. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

17 pages, 3769 KiB  
Article
Effects of Submerged Macrophytes on the Growth, Morphology, Nutritional Value, and Flavor of Cultured Largemouth Bass (Micropterus salmoides)
by Zhaowei Zheng, Zhijuan Nie, Yao Zheng, Xue Tang, Yi Sun, Haojun Zhu, Jiancao Gao, Pao Xu and Gangchun Xu
Molecules 2022, 27(15), 4927; https://doi.org/10.3390/molecules27154927 - 2 Aug 2022
Cited by 15 | Viewed by 2458
Abstract
Aquaculture environment plays important roles in regulating the growth, morphology, nutrition, and flavor of aquatic products. The present study investigated growth, morphology, nutrition, and flavor formation in largemouth bass (Micropterus salmoides) cultured in the ponds with (EM group) and without (M [...] Read more.
Aquaculture environment plays important roles in regulating the growth, morphology, nutrition, and flavor of aquatic products. The present study investigated growth, morphology, nutrition, and flavor formation in largemouth bass (Micropterus salmoides) cultured in the ponds with (EM group) and without (M group) the submerged macrophytes (Elodea nuttallii). Fish in the EM group showed a significantly greater body length, higher growth rate, and lower hepatosomatic index than those in the M group (p< 0.05). Moreover, compared with fish in the M group, those in the EM group showed improved muscle quality with significantly elevated levels of crude protein, total free and hydrolysable amino acids, and polyunsaturated fatty acids (p < 0.05). Specifically, certain amino acids related to flavor (Glu, Asp, Ala, and Arg) and valuable fatty acids (C18:2, C18:3n3, C20:3n3, and C22:6) were more abundant in the EM group (p < 0.05). In addition, the levels of 19 volatile (p < 0.05) were significantly higher in the EM group than in the M group. Therefore, E. nuttallii significantly improved growth, morphological traits, nutritional components, and characteristic flavor in largemouth bass, indicating the superior nutritional value and palatability of fish cultured with submerged macrophytes. Full article
Show Figures

Graphical abstract

15 pages, 1292 KiB  
Article
Correlating Sensory Assessment of Smoke-Tainted Wines with Inter-Laboratory Study Consensus Values for Volatile Phenols
by James W. Favell, Kerry L. Wilkinson, Ieva Zigg, Sarah M. Lyons, Renata Ristic, Carolyn J. Puglisi, Eric Wilkes, Randell Taylor, Duane Kelly, Greg Howell, Marianne McKay, Lucky Mokwena, Tim Plozza, Pei Zhang, AnhDuyen Bui, Ian Porter, Orrin Frederick, Jasha Karasek, Colleen Szeto, Bruce S. Pan, Steve Tallman, Beth Anne McClure, Hui Feng, Eric Hervé, Anita Oberholster, Wesley F. Zandberg and Matthew Noesthedenadd Show full author list remove Hide full author list
Molecules 2022, 27(15), 4892; https://doi.org/10.3390/molecules27154892 - 30 Jul 2022
Cited by 15 | Viewed by 3924
Abstract
Vineyard exposure to wildfire smoke can taint grapes and wine. To understand the impact of this taint, it is imperative that the analytical methods used are accurate and precise. This study compared the variance across nine commercial and research laboratories following quantitative analysis [...] Read more.
Vineyard exposure to wildfire smoke can taint grapes and wine. To understand the impact of this taint, it is imperative that the analytical methods used are accurate and precise. This study compared the variance across nine commercial and research laboratories following quantitative analysis of the same set of smoke-tainted wines. In parallel, correlations between the interlaboratory consensus values for smoke-taint markers and sensory analyses of the same smoke-tainted wines were evaluated. For free guaiacol, the mean accuracy was 94 ± 11% in model wine, while the free cresols and 4-methylguaiacol showed a negative bias and/or decreased precision relative to guaiacol. Similar trends were observed in smoke-tainted wines, with the cresols and glycosidically bound markers demonstrating high variance. Collectively, the interlaboratory results show that data from a single laboratory can be used quantitatively to understand smoke-taint. Results from different laboratories, however, should not be directly compared due to the high variance between study participants. Correlations between consensus compositional data and sensory evaluations suggest the risk of perceivable smoke-taint can be predicted from free cresol concentrations, overcoming limitations associated with the occurrence of some volatile phenols, guaiacol in particular, as natural constituents of some grape cultivars and of the oak used for barrel maturation. Full article
(This article belongs to the Special Issue Smoke Taint in Grapes and Wine)
Show Figures

Figure 1

20 pages, 2935 KiB  
Article
A Preliminary Assessment of the Nutraceutical Potential of Acai Berry (Euterpe sp.) as a Potential Natural Treatment for Alzheimer’s Disease
by Maryam N. ALNasser, Ian R. Mellor and Wayne G. Carter
Molecules 2022, 27(15), 4891; https://doi.org/10.3390/molecules27154891 - 30 Jul 2022
Cited by 15 | Viewed by 5705
Abstract
Alzheimer’s disease (AD) is characterised by progressive neuronal atrophy and the loss of neuronal function as a consequence of multiple pathomechanisms. Current AD treatments primarily operate at a symptomatic level to treat a cholinergic deficiency and can cause side effects. Hence, there is [...] Read more.
Alzheimer’s disease (AD) is characterised by progressive neuronal atrophy and the loss of neuronal function as a consequence of multiple pathomechanisms. Current AD treatments primarily operate at a symptomatic level to treat a cholinergic deficiency and can cause side effects. Hence, there is an unmet need for healthier lifestyles to reduce the likelihood of AD as well as improved treatments with fewer adverse reactions. Diets rich in phytochemicals may reduce neurodegenerative risk and limit disease progression. The native South American palm acai berry (Euterpe oleraceae) is a potential source of dietary phytochemicals beneficial to health. This study aimed to screen the nutraceutical potential of the acai berry, in the form of aqueous and ethanolic extracts, for the ability to inhibit acetyl- and butyryl-cholinesterase (ChE) enzymes and scavenge free radicals via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) or 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. In addition, this study aimed to quantify the acai berry’s antioxidant potential via hydrogen peroxide or hydroxyl scavenging, nitric oxide scavenging, lipid peroxidation inhibition, and the ability to reduce ferric ions. Total polyphenol and flavonoid contents were also determined. Acai aqueous extract displayed a concentration-dependent inhibition of acetyl- and butyryl-cholinesterase enzymes. Both acai extracts displayed useful concentration-dependent free radical scavenging and antioxidant abilities, with the acai ethanolic extract being the most potent antioxidant and displaying the highest phenolic and flavonoid contents. In summary, extracts of the acai berry contain nutraceutical components with anti-cholinesterase and antioxidant capabilities and may therefore provide a beneficial dietary component that limits the pathological deficits evidenced in AD. Full article
Show Figures

Graphical abstract

17 pages, 3362 KiB  
Article
Pinus mugo Essential Oil Impairs STAT3 Activation through Oxidative Stress and Induces Apoptosis in Prostate Cancer Cells
by Muhammed Ashiq Thalappil, Elena Butturini, Alessandra Carcereri de Prati, Ilaria Bettin, Lorenzo Antonini, Filippo Umberto Sapienza, Stefania Garzoli, Rino Ragno and Sofia Mariotto
Molecules 2022, 27(15), 4834; https://doi.org/10.3390/molecules27154834 - 28 Jul 2022
Cited by 15 | Viewed by 2863
Abstract
Essential oils (EOs) and their components have been reported to possess anticancer properties and to increase the sensitivity of cancer cells to chemotherapy. The aim of this work was to select EOs able to downregulate STAT3 signaling using Western blot and RT-PCR analyses. [...] Read more.
Essential oils (EOs) and their components have been reported to possess anticancer properties and to increase the sensitivity of cancer cells to chemotherapy. The aim of this work was to select EOs able to downregulate STAT3 signaling using Western blot and RT-PCR analyses. The molecular mechanism of anti-STAT3 activity was evaluated through spectrophotometric and fluorometric analyses, and the biological effect of STAT3 inhibition was analyzed by flow cytometry and wound healing assay. Herein, Pinus mugo EO (PMEO) is identified as an inhibitor of constitutive STAT3 phosphorylation in human prostate cancer cells, DU145. The down-modulation of the STAT3 signaling cascade decreased the expression of anti-proliferative as well as anti-apoptotic genes and proteins, leading to the inhibition of cell migration and apoptotic cell death. PMEO treatment induced a rapid drop in glutathione (GSH) levels and an increase in reactive oxygen species (ROS) concentration, resulting in mild oxidative stress. Pretreatment of cells with N-acetyl-cysteine (NAC), a cell-permeable ROS scavenger, reverted the inhibitory action of PMEO on STAT3 phosphorylation. Moreover, combination therapy revealed that PMEO treatment displayed synergism with cisplatin in inducing the cytotoxic effect. Overall, our data highlight the importance of STAT3 signaling in PMEO cytotoxic activity, as well as the possibility of developing adjuvant therapy or sensitizing cancer cells to conventional chemotherapy. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 4757 KiB  
Article
Pt-Chitosan-TiO2 for Efficient Photocatalytic Hydrogen Evolution via Ligand-to-Metal Charge Transfer Mechanism under Visible Light
by Yanru Liu, Jingyun Mao, Yiwei Huang, Qingrong Qian, Yongjin Luo, Hun Xue and Songwei Yang
Molecules 2022, 27(15), 4673; https://doi.org/10.3390/molecules27154673 - 22 Jul 2022
Cited by 15 | Viewed by 2256
Abstract
The Pt-chitosan-TiO2 charge transfer (CT) complex was synthesized via the sol-gel and impregnation method. The synthesized photocatalysts were thoroughly characterized, and their photocatalytic activity were evaluated toward H2 production through water reduction under visible-light irradiation. The effect of the preparation conditions [...] Read more.
The Pt-chitosan-TiO2 charge transfer (CT) complex was synthesized via the sol-gel and impregnation method. The synthesized photocatalysts were thoroughly characterized, and their photocatalytic activity were evaluated toward H2 production through water reduction under visible-light irradiation. The effect of the preparation conditions of the photocatalysts (the degree of deacetylation of chitosan, addition amount of chitosan, and calcination temperature) on the photocatalytic activity was discussed. The optimal Pt-10%DD75-T200 showed a H2 generation rate of 280.4 μmol within 3 h. The remarkable visible-light photocatalytic activity of Pt-chitosan-TiO2 was due to the CT complex formation between chitosan and TiO2, which extended the visible-light absorption and induced the ligand-to-metal charge transfer (LMCT). The photocatalytic mechanism of Pt-chitosan-TiO2 was also investigated. This paper outlines a new and facile pathway for designing novel visible-light-driven photocatalysts that are based on TiO2 modified by polysaccharide biomass wastes that are widely found in nature. Full article
(This article belongs to the Special Issue Thermal and Photocatalytic Analysis of Nanomaterials)
Show Figures

Figure 1

16 pages, 3546 KiB  
Article
Laser Spectroscopic Characterization for the Rapid Detection of Nutrients along with CN Molecular Emission Band in Plant-Biochar
by Tahani A. Alrebdi, Amir Fayyaz, Haroon Asghar, Samira Elaissi and Lamia Abu El Maati
Molecules 2022, 27(15), 5048; https://doi.org/10.3390/molecules27155048 - 8 Aug 2022
Cited by 14 | Viewed by 3338
Abstract
We report a quantitative analysis of various plant-biochar samples (S1, S2 and S3) by utilizing a laser-induced breakdown spectroscopy (LIBS) technique. For LIBS analysis, laser-induced microplasma was generated on the target surface by using a focused beam through a high-power Nd: YAG laser [...] Read more.
We report a quantitative analysis of various plant-biochar samples (S1, S2 and S3) by utilizing a laser-induced breakdown spectroscopy (LIBS) technique. For LIBS analysis, laser-induced microplasma was generated on the target surface by using a focused beam through a high-power Nd: YAG laser and optical emission spectra were recorded using a charged coupled device (CCD) array spectrometer, with wavelength ranges from 200 nm to 720 nm. The spectroscopical analysis showed the existence of various ingredients, including H, Li, Ca, Na, Al, Zn, Mg, Sr, Si, and Fe, along with a CN molecular emission band due to B2Σ+ − X2Σ+ electronic transition. By assuming conditions of the plasma is optically thin and in LTE, calibration-free laser-induced breakdown spectroscopy (CF-LIBS) was utilized for the compositional analysis of the ingredients present in the three plant-biochar samples. To lower the uncertainties, we used an average composition (%) of the three plant-biochar samples. The quantitative study of the plant-biochar samples was also achieved using the energy dispersive X-ray (EDX) technique, showing good agreement with the CF-LIBS technique. In addition, statistical analysis, such as principal component analysis (PCA), was performed for the clustering and classification of the three plant-biochar samples. The first three PCs explained an overall ~91% of the variation in LIBS spectral data, including PC1 (58.71%), PC2 (20.9%), and PC3 (11.4%). These findings suggest that LIBS is a robust tool for rapid measurement of heavy as well as light elements, such as H, Li, and nutritional metals in plant-biochar samples. Full article
(This article belongs to the Special Issue Laser Spectroscopic Characterization of the Organic Chromophores)
Show Figures

Figure 1

15 pages, 5625 KiB  
Article
One Pot Synthesis of Graphene through Microwave Assisted Liquid Exfoliation of Graphite in Different Solvents
by Betül Gürünlü, Çiğdem Taşdelen-Yücedağ and Mahmut Bayramoğlu
Molecules 2022, 27(15), 5027; https://doi.org/10.3390/molecules27155027 - 7 Aug 2022
Cited by 14 | Viewed by 3703
Abstract
This study presents an easy and quick method for the synthesis of graphene from graphite in a set of solvents, including n-Hexadecane (n-Hexa), dimethylsulfoxide (DMSO), sodium hydroxide (NaOH), 1-octanol (OCTA), perchloric acid (PA), N,N-Dimethylformamide (DMF), ethylene glycol (EG), and ethylene diamine (ED), via [...] Read more.
This study presents an easy and quick method for the synthesis of graphene from graphite in a set of solvents, including n-Hexadecane (n-Hexa), dimethylsulfoxide (DMSO), sodium hydroxide (NaOH), 1-octanol (OCTA), perchloric acid (PA), N,N-Dimethylformamide (DMF), ethylene glycol (EG), and ethylene diamine (ED), via microwave (MW) energy. The properties of final products were determined by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis) spectroscopy, and the four-point probe technique. The XRD spectra of most of the MW-assisted graphene products showed peaks at 2θ = 26.5° and 54°. Layer numbers extend from 2 and 25, and the leading comes about were gotten by having two-layered products, named as graphene synthesized in dimethylsulfoxide (G-DMSO), graphene synthesized in ethylene glycol (G-EG), and graphene synthesized in 1-octanol (G-OCTA). G-DMF has the highest electrical conductivity with 22 S/m. The electrical conductivity is higher when the dipole moment of the used solvent is between 2 and 4 Debye (D). The FTIR spectra of most of the MW-assisted graphene products are in line with commercial graphene (CG). The UV-Vis spectra of all MW-assisted graphene products showed a peak at 223 nm referring to characteristic sp2 C=C bonds and 273 nm relating to the n → π * transition of C-O bonds. Full article
(This article belongs to the Special Issue 2D Nanomaterials and Nanostructures)
Show Figures

Figure 1

23 pages, 1491 KiB  
Article
All-Atom Molecular Dynamics of Pure Water–Methane Gas Hydrate Systems under Pre-Nucleation Conditions: A Direct Comparison between Experiments and Simulations of Transport Properties for the Tip4p/Ice Water Model
by André Guerra, Samuel Mathews, Milan Marić, Phillip Servio and Alejandro D. Rey
Molecules 2022, 27(15), 5019; https://doi.org/10.3390/molecules27155019 - 7 Aug 2022
Cited by 14 | Viewed by 3684
Abstract
(1) Background: New technologies involving gas hydrates under pre-nucleation conditions such as gas separations and storage have become more prominent. This has necessitated the characterization and modeling of the transport properties of such systems. (2) Methodology: This work explored methane hydrate systems under [...] Read more.
(1) Background: New technologies involving gas hydrates under pre-nucleation conditions such as gas separations and storage have become more prominent. This has necessitated the characterization and modeling of the transport properties of such systems. (2) Methodology: This work explored methane hydrate systems under pre-nucleation conditions. All-atom molecular dynamics simulations were used to quantify the performance of the TIP4P/2005 and TIP4P/Ice water models to predict the viscosity, diffusivity, and thermal conductivity using various formulations. (3) Results: Molecular simulation equilibrium was robustly demonstrated using various measures. The Green–Kubo estimation of viscosity outperformed other formulations when combined with TIP4P/Ice, and the same combination outperformed all TIP4P/2005 formulations. The Green–Kubo TIP4P/Ice estimation of viscosity overestimates (by 84% on average) the viscosity of methane hydrate systems under pre-nucleation conditions across all pressures considered (0–5 MPag). The presence of methane was found to increase the average number of hydrogen bonds over time (6.7–7.8%). TIP4P/Ice methane systems were also found to have 16–19% longer hydrogen bond lifetimes over pure water systems. (4) Conclusion: An inherent limitation in the current water force field for its application in the context of transport properties estimations for methane gas hydrate systems. A re-parametrization of the current force field is suggested as a starting point. Until then, this work may serve as a characterization of the deviance in viscosity prediction. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry)
Show Figures

Figure 1

21 pages, 1976 KiB  
Review
Insights into the Explicit Protective Activity of Herbals in Management of Neurodegenerative and Cerebrovascular Disorders
by Tapan Behl, Rashita Makkar, Aayush Sehgal, Neelam Sharma, Sukhbir Singh, Mohammed Albratty, Asim Najmi, Abdulkarim M. Meraya and Simona Gabriela Bungau
Molecules 2022, 27(15), 4970; https://doi.org/10.3390/molecules27154970 - 4 Aug 2022
Cited by 14 | Viewed by 4192
Abstract
The longstanding progressive neurodegenerative conditions of the central nervous system arise mainly due to deterioration, degradation and eventual neuronal cell loss. As an individual ages, the irreversible neurodegenerative disorders associated with aging also begin to develop, and these have become exceedingly prominent and [...] Read more.
The longstanding progressive neurodegenerative conditions of the central nervous system arise mainly due to deterioration, degradation and eventual neuronal cell loss. As an individual ages, the irreversible neurodegenerative disorders associated with aging also begin to develop, and these have become exceedingly prominent and pose a significant burden mentally, socially and economically on both the individual and their family. These disorders express several symptoms, such as tremors, dystonia, loss of cognitive functions, impairment of motor activity leading to immobility, loss of memory and many more which worsen with time. The treatment employed in management of these debilitating neurodegenerative disorders, such as Parkinson’s disease (which mainly involves the loss of dopaminergic neurons in the nigrostriatal region), Alzheimer’s disease (which arises due to accumulation of Tau proteins causing diffusive atrophy in the brain), Huntington’s disease (which involves damage of striatal and spinal neurons, etc.), have several adverse effects, leading to exploration of several lead targets and molecules existing in herbal drugs. The current review highlights the mechanistic role of natural products in the treatment of several neurodegenerative and cerebrovascular diseases such as Parkinson’s disease, Alzheimer’s disease, ischemic stroke and depression. Full article
(This article belongs to the Special Issue Bioactive Compounds: From Nature to Pharmaceutical Applications)
Show Figures

Graphical abstract

18 pages, 1624 KiB  
Article
A Comparison of Conventional and Ultrasound-Assisted BCR Sequential Extraction Methods for the Fractionation of Heavy Metals in Sewage Sludge of Different Characteristics
by Malwina Tytła, Kamila Widziewicz-Rzońca and Zuzanna Bernaś
Molecules 2022, 27(15), 4947; https://doi.org/10.3390/molecules27154947 - 3 Aug 2022
Cited by 14 | Viewed by 3013
Abstract
The purpose of this study was to determine the heavy metal (HM: Cd, Cr, Cu, Ni, Pb, Zn, and Hg) content in particular chemical fractions (forms) of sewage sludge with different characteristics (primary and dewatered sludge) using conventional (CSE) and ultrasound-assisted (USE) BCR [...] Read more.
The purpose of this study was to determine the heavy metal (HM: Cd, Cr, Cu, Ni, Pb, Zn, and Hg) content in particular chemical fractions (forms) of sewage sludge with different characteristics (primary and dewatered sludge) using conventional (CSE) and ultrasound-assisted (USE) BCR sequential extraction methods (Community Bureau of Reference, now the Standards, Measurements and Testing Programme). The concentrations of HMs were determined using inductively coupled plasma optical spectrometry (ICP-OES). Only mercury was assayed with cold vapor atomic absorption spectrometry (CVAAS). Ultrasound treatment was conducted in the ultrasonic bath (Sonic 5, Polsonic). The optimal sonication time (30 min) was determined using ERM-CC144 (Joint Research Center; JCR) certified reference material. The conducted experiment revealed that the use of ultrasound waves shortened the extraction time to 4 h and 30 min (Stages I to III). The recoveries (RM) of heavy metals ranged from 62.8% to 130.2% (CSE) and from 79.8% to 135.7% (USE) for primary sludge, and from 87.2% to 113.2% (CSE) and from 87.8% to 112.0% (USE) for dewatered sludge. The only exception was Hg in dewatered sludge. The conducted research revealed minor differences in the concentrations and fractionation patterns for Cd, Ni, and Zn extracted from sludge samples by the tested methods. However, it was confirmed that the above findings do not significantly affect the results of a potential ecological risk assessment (with minor exceptions for Cd and Zn in the primary sludge), which is extremely essential for the natural use of sludge, and especially dewatered sludge (the final sludge). The shorter extraction time and lower energy consumption prove that ultrasound-assisted extraction is a fast and simple method for HM fractionation, and that it provides an alternative to the conventional procedure. Therefore, it can be considered a “green method” for the assessment of the bioavailability and mobility of heavy metals in solid samples. Full article
(This article belongs to the Section Ultrasound Chemistry)
Show Figures

Graphical abstract

22 pages, 4151 KiB  
Article
New Quinoxaline-Based Derivatives as PARP-1 Inhibitors: Design, Synthesis, Antiproliferative, and Computational Studies
by Yasmin M. Syam, Manal M. Anwar, Somaia S. Abd El-Karim, Khaled M. Elokely and Sameh H. Abdelwahed
Molecules 2022, 27(15), 4924; https://doi.org/10.3390/molecules27154924 - 2 Aug 2022
Cited by 14 | Viewed by 3803
Abstract
Herein, 2,3-dioxo-1,2,3,4-tetrahydroquinoxaline was used as a bio-isosteric scaffold to the phthalazinone motif of the standard drug Olaparib to design and synthesize new derivatives of potential PARP-1 inhibitory activity using the 6-sulfonohydrazide analog 3 as the key intermediate. Although the new compounds represented the [...] Read more.
Herein, 2,3-dioxo-1,2,3,4-tetrahydroquinoxaline was used as a bio-isosteric scaffold to the phthalazinone motif of the standard drug Olaparib to design and synthesize new derivatives of potential PARP-1 inhibitory activity using the 6-sulfonohydrazide analog 3 as the key intermediate. Although the new compounds represented the PARP-1 suppression impact of IC50 values in the nanomolar range, compounds 8a, 5 were the most promising suppressors, producing IC50 values of 2.31 and 3.05 nM compared to Olaparib with IC50 of 4.40 nM. Compounds 4, 10b, and 11b showed a mild decrease in the potency of the IC50 range of 6.35–8.73 nM. Furthermore, compounds 4, 5, 8a, 10b, and 11b were evaluated as in vitro antiproliferative agents against the mutant BRCA1 (MDA-MB-436, breast cancer) compared to Olaparib as a positive control. Compound 5 exhibited the most significant potency of IC50; 2.57 µM, whereas the IC50 value of Olaparib was 8.90 µM. In addition, the examined derivatives displayed a promising safety profile against the normal WI-38 cell line. Cell cycle, apoptosis, and autophagy analyses were carried out in the MDA-MB-436 cell line for compound 5, which exhibited cell growth arrest at the G2/M phase, in addition to induction of programmed apoptosis and an increase in the autophagic process. Molecular docking of the compounds 4, 5, 8a, 10b, and 11b into the active site of PARP-1 was carried out to determine their modes of interaction. In addition, an in silico ADMET study was performed. The results evidenced that compound 5 could serve as a new framework for discovering new potent anticancer agents targeting the PARP-1 enzyme. Full article
Show Figures

Graphical abstract