Porcine Viruses 2024

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Animal Viruses".

Deadline for manuscript submissions: 31 August 2024 | Viewed by 597

Special Issue Editors

Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
Interests: development of vaccines against animal viruses
Special Issues, Collections and Topics in MDPI journals
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
Interests: viruses; immunology; vaccines
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
Interests: porcine virus; immune evasion; pathogenesis; epidemiology; virus evolution; prevention and control; vaccine
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Swine virus disease is a kind of disease that inflicts great harm on the pig industry. This disease is not only harmful to pigs, but also highly contagious. Once a pig is infected, an entire farm or even an entire area is at risk. In recent years, various emerging and re-emerging disease pathogens have gradually broken through the existing immune defense line, through continuous recombination and evolution, resulting in the inefficiency or even ineffectiveness of current immune prevention and control measures, bringing huge threats and serious economic losses to the global pig industry. For example, African swine fever virus (ASFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and porcine pseudorabies virus (PRV) constantly mutate under multiple selection pressures, such as body immunity and vaccine immunity. As the frequency of international trade increases, viruses spread faster and wider. Similar virus strains in different regions recombine with each other, making the recombinant mutant strains break through the existing immune prevention and control measures, increasing the difficulty of disease prevention and control. Therefore, this Special Issue will focus on the epidemiological study of swine viruses, the pathogenesis and immune escape mechanisms of the viruses, and the development of new vaccines in addition to other related disease prevention and control issues. We welcome you to provide relevant research articles, comments, and original research.

Prof. Dr. Guoxin Li
Dr. Lingxue Yu
Prof. Dr. Jin Cui
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • epidemiology
  • pathogenesis
  • immune evasion
  • virus evolution
  • vaccine

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 1670 KiB  
Article
Porcine Circovirus Type 3 (PCV3) in Poland: Prevalence in Wild Boar Population in Connection with African Swine Fever (ASF)
by Maciej Piotr Frant, Natalia Mazur-Panasiuk, Anna Gal-Cisoń, Łukasz Bocian, Magdalena Łyjak and Anna Szczotka-Bochniarz
Viruses 2024, 16(5), 754; https://doi.org/10.3390/v16050754 - 10 May 2024
Viewed by 354
Abstract
Human health is dependent on food safety and, therefore, on the health of farm animals. One of the most significant threats in regard to swine diseases is African swine fever (ASF). Infections caused by porcine circoviruses (PCVs) represent another important swine disease. Due [...] Read more.
Human health is dependent on food safety and, therefore, on the health of farm animals. One of the most significant threats in regard to swine diseases is African swine fever (ASF). Infections caused by porcine circoviruses (PCVs) represent another important swine disease. Due to the ubiquitous nature of PCV2, it is not surprising that this virus has been detected in ASFV-affected pigs. However, recent data indicate that coinfection of PCV3 and ASFV also occurs. It is still unclear whether PCV infection plays a role in ASFV infection, and that subject requires further analysis. The aim of this study was to assess whether PCV3 and PCV4 are present in the wild boar population in Poland (real-time PCR). The analysis was performed on wild boar samples collected for routine ASF surveillance in Poland, between 2018 and 2021. By extension, the obtained data were compared in regard to ASFV presence in these samples, thus investigating the odds of ASFV infection on the grounds of the PCV carrier state in free-ranging Suidae in Poland. In addition, sequencing of PCV3 and phylogenetic analysis were performed, based on a full genome and a capsid gene. In the current study, we demonstrated the high prevalence of PCV3 in the wild boar population in Poland; meanwhile, PCV4 was not detected. The odds of ASFV infection on the grounds of the PCV3 carrier state in free-ranging Suidae in Poland was more than twice as high. Ten full genome sequences of PCV3 were obtained, all of them belonging to clade 3a. The similarity between them was in the range of 98.78–99.80%. Full article
(This article belongs to the Special Issue Porcine Viruses 2024)
Show Figures

Figure 1

Back to TopTop