Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,083)

Search Parameters:
Keywords = remote-sensing indices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 60167 KiB  
Article
Mapping Ecosystem Carbon Storage in the Nanling Mountains of Guangdong Province Using Machine Learning Based on Multi-Source Remote Sensing
by Wei Wang, Liangbo Tang, Ying Zhang, Junxing Cai, Xiaoyuan Chen and Xiaoyun Mao
Atmosphere 2025, 16(8), 954; https://doi.org/10.3390/atmos16080954 (registering DOI) - 10 Aug 2025
Abstract
Accurate assessment of terrestrial ecosystem carbon storage is essential for understanding the global carbon cycle and informing climate change mitigation strategies. However, traditional estimation models face significant challenges in complex mountainous regions due to difficulties in data acquisition and high ecosystem heterogeneity. This [...] Read more.
Accurate assessment of terrestrial ecosystem carbon storage is essential for understanding the global carbon cycle and informing climate change mitigation strategies. However, traditional estimation models face significant challenges in complex mountainous regions due to difficulties in data acquisition and high ecosystem heterogeneity. This study focuses on the Nanling Mountains in Guangdong Province, China, utilizing the Google Earth Engine (GEE) platform to integrate multi-source remote sensing data (Sentinel-1/2, ALOS, GEDI, MODIS), topographic/climatic variables, and field-collected samples. We employed machine learning models to achieve high-precision prediction and high-resolution mapping of ecosystem carbon storage while also analyzing spatial differentiation patterns. The results indicate that the Random Forest algorithm outperformed Gradient Boosting Decision Tree and Classification and Regression Tree (CART) algorithms by suppressing overfitting through dual randomization. The integration of multi-source data significantly enhanced model performance, achieving a coefficient of determination (R2) of 0.87 for aboveground biomass (AGB) and 0.65 for soil organic carbon (SOC). Integrating precipitation, temperature, and topographic variables improved SOC prediction accuracy by 96.77% compared to using optical data alone. The total carbon storage reached 404 million tons, with forest ecosystems contributing 96.7% of the total and soil carbon pools accounting for 60%. High carbon density zones (>160 Mg C/ha) were mainly concentrated in mid-elevation gentle slopes (300–700 m). The proposed integrated “optical-radar-topography-climate” framework offers a scalable and transferable solution for monitoring carbon storage in complex terrains and provides robust scientific support for carbon sequestration planning in subtropical mountain ecosystems. Full article
Show Figures

Figure 1

27 pages, 22030 KiB  
Article
Spatiotemporal Dynamics of Urban Air Pollution in Dhaka City (2020–2024) Using Time-Series Sentinel-5P Satellite Images and Google Earth Engine (GEE)
by Md. Mostafizur Rahman, Md. Kamruzzaman, Mst Ilme Faridatul and György Szabó
Environments 2025, 12(8), 274; https://doi.org/10.3390/environments12080274 (registering DOI) - 10 Aug 2025
Abstract
This study investigated the spatiotemporal dynamics of four major air pollutants—carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and ozone (O3)—across Dhaka from 2020 to 2024 using Sentinel-5P TROPOMI satellite data. A 60-month time-series analysis was [...] Read more.
This study investigated the spatiotemporal dynamics of four major air pollutants—carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and ozone (O3)—across Dhaka from 2020 to 2024 using Sentinel-5P TROPOMI satellite data. A 60-month time-series analysis was conducted, integrating spatial mapping, seasonal composites, and Mann–Kendall trend testing. Results indicated clear seasonal variations: CO and NO2 concentrations peaked during winter, with maximum monthly averages of 0.05287 mol/m2 and 0.00035 mol/m2, respectively, while SO2 reached a high of 0.00043 mol/m2 in pre-monsoon months. In contrast, O3 peaked in May (0.13023 mol/m2), following an inverse seasonal trend driven by photochemical activity. Spatial analysis revealed persistent pollution hotspots in central-western zones like Tejgaon and Mirpur for CO and NO2, while SO2 was concentrated in southern industrial zones such as Keraniganj and Jatrabari. The Mann–Kendall test identified moderate to strong increasing trends for CO (τ = 0.8, p = 0.086 in June and September) and SO2 (τ = 0.8, p = 0.086 in April and May), although most trends lacked statistical significance due to the limited temporal window. This study demonstrates the viability of combining satellite remote sensing and cloud-based processing for urban air quality monitoring and provides actionable insights for targeted seasonal interventions and evidence-based policymaking in Dhaka’s evolving urban context. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

24 pages, 5129 KiB  
Article
Multi-Source Indicator Modeling and Spatiotemporal Evolution of Spring Sowing Agricultural Risk Along the Great Wall Belt, China
by Guofang Wang, Juanling Wang, Mingjing Huang, Jiancheng Zhang, Xuefang Huang and Wuping Zhang
Agronomy 2025, 15(8), 1930; https://doi.org/10.3390/agronomy15081930 (registering DOI) - 10 Aug 2025
Abstract
The spatiotemporal heterogeneity of hydrothermal conditions during the spring sowing period profoundly shapes cropping layouts and sowing strategies. Using NASA’s GLDAS remote sensing reanalysis, we developed a continuous agricultural climate risk index that integrates three remotely driven indicators—spring sowing window days (SWDs) derived [...] Read more.
The spatiotemporal heterogeneity of hydrothermal conditions during the spring sowing period profoundly shapes cropping layouts and sowing strategies. Using NASA’s GLDAS remote sensing reanalysis, we developed a continuous agricultural climate risk index that integrates three remotely driven indicators—spring sowing window days (SWDs) derived from a “continuous suitable-day” logic, the hydrothermal coordination degree (D value), and a comprehensive suitability index (SSH_SI)—thus advancing risk assessment from single metrics to a multidimensional framework. Methodologically, dominant periodic structures of spring sowing hydrothermal risk were extracted via a combination of wavelet power spectra and the global wavelet spectrum (GWS), while spatial trend-surface fitting and three-dimensional directional analysis captured spatial non-stationarity. The index’s spatial migration trajectories and centroid-evolution paths were then quantified. Results reveal pronounced gradients along the Great Wall Belt: SWD displays a “central-high, terminal-low” pattern, with sowing windows restricted to only 3–6 days in northeastern Inner Mongolia and western Liaoning but extending to 11–13 days in the central plains of Inner Mongolia and Shanxi; SSH_SI and D values form an overall “south-west high, north-east low” pattern, indicating more favorable hydrothermal coordination in southwestern areas. Temporally, although SWD and SSH_SI show no significant downward trend, their interannual variability has increased, signaling rising instability, whereas the D value declines markedly in most regions, reflecting intensified hydrothermal imbalance. The integrated risk index identifies high-risk hotspots in eastern Inner Mongolia and northern North China, and low-risk zones in western provinces such as Gansu and Ningxia. Centroid-shift analysis further uncovers a dynamic regional adjustment in optimal sowing patterns, offering scientific evidence for addressing spring sowing climate risks. These findings provide a theoretical foundation and decision support for optimizing regional cropping structures, issuing climate risk warnings, and precisely regulating spring sowing schedules. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

16 pages, 6451 KiB  
Article
Analysis of the Distribution Characteristics and Influencing Factors of Apparent Temperature in Chang–Zhu–Tan
by Dongshui Zhang, Junjie Liu, Yanlu Xiao, Xiuquan Li, Xinbao Chen, Pin Zhong and Zhe Ning
Sustainability 2025, 17(16), 7225; https://doi.org/10.3390/su17167225 (registering DOI) - 10 Aug 2025
Abstract
Rapid urbanization and climate change have exacerbated urban heat stress, underscoring the importance of research on human thermal comfort for sustainable urban development. This study analyzes the spatiotemporal variation and driving factors of apparent temperature in the Chang–Zhu–Tan urban agglomeration, China. The Humidex [...] Read more.
Rapid urbanization and climate change have exacerbated urban heat stress, underscoring the importance of research on human thermal comfort for sustainable urban development. This study analyzes the spatiotemporal variation and driving factors of apparent temperature in the Chang–Zhu–Tan urban agglomeration, China. The Humidex index, representing apparent temperature, was derived from multi-source remote sensing data (Landsat 8, MODIS) and meteorological variables (ERA5-Land reanalysis), employing atmospheric correction, random forest modeling, and path analysis. The results indicate pronounced spatiotemporal heterogeneity: apparent temperature reached its maximum in urban centers during summer (mean 52.9 °C) and its minimum in winter (mean 5.99 °C), following a decreasing gradient from urban core to periphery. Land cover emerged as a key driver, with vegetation (NDVI, r = −0.938) showing a strong negative correlation and built-up areas (NDBI, r = +0.8) a positive correlation with apparent temperature. Uniquely, in the Chang–Zhu–Tan region’s persistently high humidity, water bodies (MNDWI, r = +0.616) exhibited a positive correlation with apparent temperature, likely due to humidity-enhanced thermal perception in summer and relatively warmer water temperature in winter. Path analysis revealed that air temperature exerts the strongest direct positive influence on apparent temperature, while relative humidity and NDVI primarily act through indirect pathways. These findings provide scientific evidence to guide climate-adaptive urban planning and enhance human living conditions in humid environments. Full article
Show Figures

Figure 1

25 pages, 57425 KiB  
Article
Assessment of the Applicability of Hue from In Situ Spectral Measurements to Remote Sensing of Plant Phenology
by Yuki Mizuno, Taiga Sasagawa, Yoshiyuki Takahashi, Reiko Ide, Toshiyuki Kobayashi, Hiroyuki Muraoka, Kentaro Takagi, Keisuke Ono and Kenlo Nishida Nasahara
Remote Sens. 2025, 17(16), 2767; https://doi.org/10.3390/rs17162767 (registering DOI) - 9 Aug 2025
Abstract
Climate change is accelerating, and the monitoring of plant phenology is becoming increasingly important. In response to this need, many vegetation indices (VIs) and analytical methods have been developed. However, many VIs are vulnerable to uncertainties caused by snowmelt, making them potentially unsuitable [...] Read more.
Climate change is accelerating, and the monitoring of plant phenology is becoming increasingly important. In response to this need, many vegetation indices (VIs) and analytical methods have been developed. However, many VIs are vulnerable to uncertainties caused by snowmelt, making them potentially unsuitable for monitoring spring phenology in forested regions where leaf flush (start of season, SOS) begins simultaneously with snowmelt. Although several VIs for snowy regions have been proposed, most of them were designed for tundra vegetation, such as grasslands. Currently, no VI or analytical method specifically suited for snowy forested regions has been firmly established. Similarly, there is still no well-established method for continuously monitoring autumn coloration. In this study, we propose the use of hue, one of the components of the HSV model, for remote sensing of plant phenology. Hue quantifies differences in object color and is expected to facilitate clearer distinction of snow influence. It may also enable accurate detection of canopy color transitions, such as autumn coloration. We evaluate the applicability of hue to remote sensing using in situ spectroradiometer observations collected from five sites of the Phenological Eyes Network (PEN), which represent a range of ecosystems—including forests, grasslands, and paddy fields—as well as the relative spectral response (RSR) of the Second-generation Global Imager (SGLI) onboard the GCOM-C satellite operated by JAXA (Japan Aerospace Exploration Agency). The results suggest that hue is more robust to snow-related uncertainties than traditional VIs (NDVI, EVI, CCI, NDGI) and may also be effective for quantifying autumn coloration. Hue is calculated solely from blue, green, and red reflectance, without relying on near-infrared (NIR) or shortwave infrared (SWIR) channels. Since blue, green and red channels are available on almost all optical satellite sensors, hue may offer broader applicability than many traditional VIs. Full article
(This article belongs to the Section Ecological Remote Sensing)
25 pages, 3399 KiB  
Article
Spatiotemporal Extraction of Aquaculture Ponds Under Complex Surface Conditions Based on Deep Learning and Remote Sensing Indices
by Weirong Qin, Mohd Hasmadi Ismail, Mohammad Firuz Ramli, Junlin Deng and Ning Wu
Sustainability 2025, 17(16), 7201; https://doi.org/10.3390/su17167201 - 8 Aug 2025
Abstract
The extraction of water surfaces and aquaculture targets from remote sensing imagery has been challenging for operations under different regions and conditions, especially since the model parameters must be optimized manually. This study addresses the requirement for large-scale monitoring of global aquaculture using [...] Read more.
The extraction of water surfaces and aquaculture targets from remote sensing imagery has been challenging for operations under different regions and conditions, especially since the model parameters must be optimized manually. This study addresses the requirement for large-scale monitoring of global aquaculture using the Google Earth Engine (GEE) platform to extract high-accuracy, long-term data series of water surfaces such as aquaculture ponds. A Composite Water Index (CWI) method is proposed to distinguish water surfaces from non-water surfaces with remote sensing data recorded with Sentinel-2 satellite, thereby minimizing manual intervention in aquaculture management. The CWI approach is implemented based on three index algorithms of remote sensing analysis such as the Water Index (WI), the Modified Normalized Difference Water Index (MNDWI) and the Automated Water Extraction Index with Shadow (AWEIsh). The values of the three index methods are obtained from 1000 grid points extracted with an overlaid map with three layers. A ternary regression method is then introduced to generate the coefficients of CWI. Experimental results show that the classification accuracy of the WI is higher than that of the MNDWI and the AWEIsh, leading to a more significant coefficient weight in the ternary regression. When different numbers of mean distribution points are used to calculate the indices, it is found that the highest R2 value can be achieved when using the coefficient value corresponding to 600 points, and an accuracy of 94% can be achieved by the CWI method for water surface classification. The CWI algorithm can also be used to monitor the change in aquaculture ponds in Johor, Malaysia; it was discovered that the total aquaculture area has expanded by 23.27 km from 2016 to 2023. This study provides a potential means for long-term observation and tracking of changes in aquaculture ponds and water surfaces, as well as water management and water protection. Specifically, the proposed Composite Water Index (CWI) model achieved a mean mIoU of 0.84 and an overall pixel accuracy (oPA) of 0.94, which significantly outperformed WI (mIoU = 0.79), MNDWI (mIoU = 0.75), and AWEIsh (mIoU = 0.77), with p-values < 0.01. These improvements demonstrate the robustness and statistical superiority of the proposed approach in aquaculture pond extraction. Full article
19 pages, 4926 KiB  
Article
Dynamic Evolution and Triggering Mechanisms of the Simutasi Peak Avalanche in the Chinese Tianshan Mountains: A Multi-Source Data Fusion Approach
by Xiaowen Qiang, Jichen Huang, Qiang Guo, Zhiwei Yang, Bin Wang and Jie Liu
Remote Sens. 2025, 17(16), 2755; https://doi.org/10.3390/rs17162755 - 8 Aug 2025
Abstract
Avalanches occur frequently in mountainous areas and pose significant threats to roads and infrastructure. Clarifying how terrain conditions influence avalanche initiation and movement is critical to improving hazard assessment and response strategies. This study focused on a wet-snow slab avalanche that occurred on [...] Read more.
Avalanches occur frequently in mountainous areas and pose significant threats to roads and infrastructure. Clarifying how terrain conditions influence avalanche initiation and movement is critical to improving hazard assessment and response strategies. This study focused on a wet-snow slab avalanche that occurred on 26 March 2024, in the Simutas region of the northern Tianshan Mountains, Xinjiang, China. The authors combined remote sensing imagery, high-resolution meteorological station observations, field investigations, and numerical simulations (RAMMS::Avalanche) to analyze the avalanche initiation mechanism, dynamic behavior, and path recurrence characteristics. Results indicated that persistent heavy snowfall, rapid warming, and substantial daily temperature fluctuations triggered this avalanche. The predominant southeasterly (SE) winds and the northwest-facing (NW) shaded slopes created favorable leeward snow deposition conditions, increasing snowpack instability. High-resolution meteorological observations provided detailed wind, temperature, and precipitation data near the avalanche release zone, clearly capturing snowpack evolution and meteorological conditions before avalanche initiation. Numerical simulations showed a maximum avalanche flow velocity of 19.22 m/s, maximum flow depth of 12.42 m, and peak dynamic pressure of 129.3 kPa. The simulated avalanche deposition area and depth closely matched field observations. Multi-temporal remote sensing images indicated that avalanche paths in this area remained spatially consistent over time, with recurrence intervals of approximately 2–3 years. The findings highlight the combined role of local meteorological processes and terrain factors in controlling avalanche initiation and dynamics. This research confirmed the effectiveness of integrating remote sensing data, high-resolution meteorological observations, and dynamic modeling, providing scientific evidence for avalanche risk assessment and disaster mitigation in mountain regions. Full article
Show Figures

Figure 1

24 pages, 6356 KiB  
Article
Sandy Beach Extraction Method Based on Multi-Source Data and Feature Optimization: A Case in Fujian Province, China
by Jie Meng, Duanyang Xu, Zexing Tao and Quansheng Ge
Remote Sens. 2025, 17(16), 2754; https://doi.org/10.3390/rs17162754 - 8 Aug 2025
Abstract
Sandy beaches are vital geomorphic units with ecological, social, and economic significance, playing a key role in coastal protection and ecosystem regulation. However, they are increasingly threatened by climate change and human activities, highlighting the need for large-scale, high-precision monitoring to support sustainable [...] Read more.
Sandy beaches are vital geomorphic units with ecological, social, and economic significance, playing a key role in coastal protection and ecosystem regulation. However, they are increasingly threatened by climate change and human activities, highlighting the need for large-scale, high-precision monitoring to support sustainable management. Existing remote-sensing-based sandy beach extraction methods face challenges such as suboptimal feature selection and reliance on single data sources, limiting their generalization and accuracy. This study proposes a novel sandy beach extraction framework that integrates multi-source data, feature optimization, and collaborative modeling, with Fujian Province, China, as the study area. The framework combines Sentinel-1/2 imagery, nighttime light data, and terrain data to construct a comprehensive feature set containing 44 spectrum, index, polarization, texture, and terrain variables. The optimal feature subsets are selected using the Recursive Feature Elimination (RFE) algorithm. Six machine learning models—Random Forest (RF), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), Gradient Boosting Machine (GBM), Adaptive Boosting (AdaBoost), and Categorical Boosting (CatBoost)—along with an ensemble learning model, are employed for comparative analysis and performance optimization. The results indicate the following. (1) All models achieved the best performance when integrating all five types of features, with the average overall F1-score and accuracy reaching 0.9714 and 0.9733, respectively. (2) The number of optimal features selected by RFE varied by model, ranging from 19 to 36. The ten most important features across models were Band 2 (B2), Elevation, Band 3 (B3), VVVH_SUM, Spatial Average (SAVG), VH, Enhanced Water Index (EWI), Slope, Variance (VAR), and Normalized Difference Vegetation Index (NDVI). (3) The ensemble learning model outperformed all others, achieving an average overall accuracy, precision, recall, and F1-score of 0.9750, 0.9733, 0.9725, and 0.9734, respectively, under the optimal feature subset. A total of 555 sandy beaches were extracted in Fujian Province, covering an area of 43.60 km2 with a total perimeter of 1263.59 km. This framework demonstrates strong adaptability and robustness in complex coastal environments, providing a scalable solution for intelligent sandy beach monitoring and refined resource management. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

23 pages, 17755 KiB  
Article
Estimating Aboveground Biomass of Mangrove Forests in Indonesia Using Spatial Attention Coupled Bayesian Aggregator
by Xinyue Zhu, Zhaohui Xue, Siyu Qian and Chenrun Sun
Forests 2025, 16(8), 1296; https://doi.org/10.3390/f16081296 - 8 Aug 2025
Viewed by 54
Abstract
Mangroves play a crucial part in the worldwide blue carbon cycle because they store a lot of carbon in their biomass and soil. Accurate estimation of aboveground biomass (AGB) is essential for quantifying carbon stocks and understanding ecological responses to climate and human [...] Read more.
Mangroves play a crucial part in the worldwide blue carbon cycle because they store a lot of carbon in their biomass and soil. Accurate estimation of aboveground biomass (AGB) is essential for quantifying carbon stocks and understanding ecological responses to climate and human disturbances. However, regional-scale AGB mapping remains difficult due to fragmented mangrove distributions, limited field data, and cross-site heterogeneity. To address these challenges, we propose a Spatial Attention Coupled Bayesian Aggregator (SAC-BA), which integrates field measurements with multi-source remote sensing (Landsat 8, Sentinel-1), terrain data, and climate variables using advanced ensemble learning. Four machine learning models (Random Forest (RF), Cubist, Support Vector Regression (SVR), and Extreme Gradient Boosting (XGBoost)) were first trained, and their outputs were fused using Bayesian model averaging with spatial attention weights and constraints based on Local Indicators of Spatial Association (LISAs), which identify spatial clusters (e.g., high–high, low–low) to improve accuracy and spatial coherence. SAC-BA achieved the highest performance (coefficient of determination (R2) = 0.82, root mean square error = 29.90 Mg/ha), outperforming all individual models and traditional BMA. The resulting 30-m AGB map of Indonesian mangroves in 2017 estimated a total of 217.17 × 106 Mg, with a mean of 103.20 Mg/ha. The predicted AGB map effectively captured spatial variability, reduced noise at ecological boundaries, and maintained high confidence predictions in core mangrove zones. These results highlight the advantages of incorporating spatial structure and uncertainty into ensemble modeling. SAC-BA provides a reliable and transferable framework for regional AGB estimation, supporting improved carbon assessment and mangrove conservation efforts. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

19 pages, 4005 KiB  
Article
Analysis of Temporal and Spatial Variations in Cropland Water-Use Efficiency and Influencing Factors in Xinjiang Based on the XGBoost–SHAP Model
by Qiu Zhao, Fan Gao, Bing He, Ying Li, Hairui Li, Yao Xiao and Ruzhang Lin
Agronomy 2025, 15(8), 1902; https://doi.org/10.3390/agronomy15081902 - 7 Aug 2025
Viewed by 240
Abstract
In arid regions with limited water resources, improving cropland water-use efficiency (WUEc) is crucial for maintaining crop production. This study aims to investigate how changes in meteorological and vegetation factors affect WUEc in drylands and to identify its primary drivers, which are essential [...] Read more.
In arid regions with limited water resources, improving cropland water-use efficiency (WUEc) is crucial for maintaining crop production. This study aims to investigate how changes in meteorological and vegetation factors affect WUEc in drylands and to identify its primary drivers, which are essential for understanding how cropland ecosystems respond to complex environmental changes. Using remote sensing data, we analyzed the spatiotemporal patterns of WUEc in Xinjiang from 2002 to 2022 by applying STL decomposition, Sen’s slope combined with the Mann–Kendall test, and an XGBoost–SHAP model, quantifying its key controlling factors. The results indicate that from 2002 to 2022, WUEc in Xinjiang showed an overall declining trend. Prior to 2007, WUEc increased at 0.05 gC·m−1·m−2·a−1, after which it fluctuated downward at −0.01 gC·m−1·m−2·a−1. Intra-annual peaks consistently occurred in May and during September–October. Spatially, WUEc exhibited significant heterogeneity, increasing from south to north, with 53.26% of the region showing declines. Temperature (T) and leaf area index (LAI) emerged as the primary meteorological and vegetation drivers, respectively, influencing WUEc change in 45.7% and 17.6% of the area. Both variables were negatively correlated with WUEc, with negative correlations covering 60% of the region for T and 83% for LAI. These findings provide scientific guidance for optimizing crop structure and water-resource management strategies in arid regions. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

23 pages, 5219 KiB  
Systematic Review
Remote Sensing for Wildfire Mapping: A Comprehensive Review of Advances, Platforms, and Algorithms
by Ruth E. Guiop-Servan, Alexander Cotrina-Sanchez, Jhoivi Puerta-Culqui, Manuel Oliva-Cruz and Elgar Barboza
Fire 2025, 8(8), 316; https://doi.org/10.3390/fire8080316 - 7 Aug 2025
Viewed by 173
Abstract
The use of remote sensing technologies for mapping forest fires has experienced significant growth in recent decades, driven by advancements in remote sensors, processing platforms, and artificial intelligence algorithms. This study presents a review of 192 scientific articles published between 1990 and 2024, [...] Read more.
The use of remote sensing technologies for mapping forest fires has experienced significant growth in recent decades, driven by advancements in remote sensors, processing platforms, and artificial intelligence algorithms. This study presents a review of 192 scientific articles published between 1990 and 2024, selected using PRISMA criteria from the Scopus database. Trends in the use of active and passive sensors, spectral indices, software, and processing platforms as well as machine learning and deep learning approaches are analyzed. Bibliometric analysis reveals a concentration of publications in Northern Hemisphere countries such as the United States, Spain, and China as well as in Brazil in the Southern Hemisphere, with sustained growth since 2015. Additionally, the publishers, journals, and authors with the highest scientific output are identified. The normalized burn ratio (NBR) and the normalized difference vegetation index (NDVI) were the most frequently used indices in fire mapping, while random forest (RF) and convolutional neural networks (CNN) were prominent among the applied algorithms. Finally, the main technological and methodological limitations as well as emerging opportunities to enhance fire detection, monitoring, and prediction in various regions are discussed. This review provides a foundation for future research in remote sensing applied to fire management. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Burned Area Mapping)
Show Figures

Figure 1

24 pages, 7063 KiB  
Article
An Improved InTEC Model for Estimating the Carbon Budgets in Eucalyptus Plantations
by Zhipeng Li, Mingxing Zhou, Kunfa Luo, Yunzhong Wu and Dengqiu Li
Remote Sens. 2025, 17(15), 2741; https://doi.org/10.3390/rs17152741 - 7 Aug 2025
Viewed by 101
Abstract
Eucalyptus has become a major plantation crop in southern China, with a carbon sequestration capacity significantly higher than that of other species. However, its long-term carbon sequestration capacity and regional-scale potential remain highly uncertain due to commonly applied short-rotation management practices. The InTEC [...] Read more.
Eucalyptus has become a major plantation crop in southern China, with a carbon sequestration capacity significantly higher than that of other species. However, its long-term carbon sequestration capacity and regional-scale potential remain highly uncertain due to commonly applied short-rotation management practices. The InTEC (Integrated Terrestrial Ecosystem Carbon) model is a process-based biogeochemical model that simulates carbon dynamics in terrestrial ecosystems by integrating physiological processes, environmental drivers, and management practices. In this study, the InTEC model was enhanced with an optimized eucalyptus module (InTECeuc) and a data assimilation module (InTECDA), and driven by multiple remote sensing products (Net Primary Productivity (NPP) and carbon density) to simulate the carbon budgets of eucalyptus plantations from 2003 to 2023. The results indicated notable improvements in the performance of the InTECeuc model when driven by different datasets: carbon density simulation showed improvements in R2 (0.07–0.56), reductions in MAE (5.99–28.51 Mg C ha−1), reductions in RMSE (8.1–31.85 Mg C ha−1), and improvements in rRMSE (12.37–51.82%), excluding NPPLin. The carbon density-driven InTECeuc model outperformed the NPP-driven model, with improvements in R2 (0.28), MAE (−8.15 Mg C ha−1), RMSE (−9.43 Mg C ha−1), and rRMSE (−15.34%). When the InTECDA model was employed, R2 values for carbon density improved by 0–0.03 (excluding ACDYan), with MAE reductions between 0.17 and 7.22 Mg C ha−1, RMSE reductions between 0.33 and 12.94 Mg C ha−1 and rRMSE improvements ranging from 0.51 to 20.22%. The carbon density-driven InTECDA model enabled the production of high-resolution and accurate carbon budget estimates for eucalyptus plantations from 2003 to 2023, with average NPP, Net Ecosystem Productivity (NEP), and Net Biome Productivity (NBP) values of 17.80, 10.09, and 9.32 Mg C ha−1 yr−1, respectively, offering scientific insights and technical support for the management of eucalyptus plantations in alignment with carbon neutrality targets. Full article
Show Figures

Figure 1

27 pages, 8056 KiB  
Article
Spatiotemporal Mapping of Soil Profile Moisture in Oases in Arid Areas
by Zihan Zhang, Jinjie Wang, Jianli Ding, Jinming Zhang, Li Li, Liya Shi and Yue Liu
Remote Sens. 2025, 17(15), 2737; https://doi.org/10.3390/rs17152737 - 7 Aug 2025
Viewed by 213
Abstract
Soil moisture is a key factor in the exchange of energy and matter between the soil and atmosphere, playing a vital role in the hydrological cycle and agricultural management. Traditional monitoring methods are limited in achieving large-scale, real-time observations, while deep learning offers [...] Read more.
Soil moisture is a key factor in the exchange of energy and matter between the soil and atmosphere, playing a vital role in the hydrological cycle and agricultural management. Traditional monitoring methods are limited in achieving large-scale, real-time observations, while deep learning offers new avenues to model the complex nonlinear relationships between spectral features and soil moisture content. This study focuses on the Wei-Ku Oasis in Xinjiang, using multi-source remote sensing data (Landsat series and Sentinel-1) and in situ multi-layer soil moisture measurements. The BOSS feature selection algorithm was applied to construct 46 feature parameters, including vegetation indices, soil indices, and microwave indices, and to identify optimal variable sets for each depth. Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and their hybrid model (CNN-LSTM) were used to build soil moisture inversion models at various depths. Their performances were systematically compared on both training and testing sets, and the optimal model was used for spatiotemporal mapping. The results show that the CNN-LSTM-based multi-depth soil moisture inversion model achieved superior performance, with the 0–10 cm model showing the highest accuracy and a testing R2 of 0.64, outperforming individual models. The testing R2 values for the soil moisture inversion models at depths of 10–20 cm, 20–40 cm, and 40–60 cm were 0.59, 0.54, and 0.59, respectively. According to the mapping results, soil moisture in the 0–60 cm profile of the Wei-Ku Oasis exhibited a vertical gradient, increasing with depth. Spatially, soil moisture was higher in the central oasis and lower toward the periphery, forming a “center-high, edge-low” pattern. This study provides a high-accuracy method for multi-layer soil moisture remote sensing in arid regions, offering valuable data support for oasis water resource management and precision irrigation planning. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

21 pages, 8772 KiB  
Article
Assessing Hydropower Impacts on Flood and Drought Hazards in the Lancang–Mekong River Using CNN-LSTM Machine Learning
by Muzi Zhang, Boying Chi, Hongbin Gu, Jian Zhou, Honggang Chen, Weiwei Wang, Yicheng Wang, Juanjuan Chen, Xueqian Yang and Xuan Zhang
Water 2025, 17(15), 2352; https://doi.org/10.3390/w17152352 - 7 Aug 2025
Viewed by 122
Abstract
The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available [...] Read more.
The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available hydrometeorological observation data and satellite remote sensing monitoring data from 2001 to 2020, a machine learning model of the Lancang–Mekong Basin was developed to reconstruct the basin’s hydrological processes, and identify the occurrence patterns and influencing mechanisms of water-related hazards. The results show that, against the background of climate change, the Lancang–Mekong Basin is affected by the increasing frequency and intensity of extreme precipitation events. In particular, Rx1day, Rx5day, R10mm, and R95p (extreme precipitation indicators determined by the World Meteorological Organization’s Expert Group on Climate Change Monitoring and Extreme Climate Events) in the northwestern part of the Mekong River Basin show upward trends, with the average maximum daily rainfall increasing by 1.8 mm/year and the total extreme precipitation increasing by 18 mm/year on average. The risks of flood and drought disasters will continue to rise. The flood peak period is mainly concentrated in August and September, with the annual maximum flood peak ranging from 5600 to 8500 m3/s. The Stung Treng Station exhibits longer drought duration, greater severity, and higher peak intensity than the Chiang Saen and Pakse Stations. At the Pakse Station, climate change and hydropower development have altered the non-drought proportion by −12.50% and +15.90%, respectively. For the Chiang Saen Station, the fragmentation degree of the drought index time series under the baseline, naturalized, and hydropower development scenarios is 0.901, 1.16, and 0.775, respectively. These results indicate that hydropower development has effectively reduced the frequency of rapid drought–flood transitions within the basin, thereby alleviating pressure on drought management efforts. The regulatory role of the cascade reservoirs in the Lancang River can mitigate risks posed by climate change, weaken adverse effects, reduce flood peak flows, alleviate hydrological droughts in the dry season, and decrease flash drought–flood transitions in the basin. The research findings can enable basin managers to proactively address climate change, develop science-based technical pathways for hydropower dispatch, and formulate adaptive disaster prevention and mitigation strategies. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

18 pages, 3441 KiB  
Article
Assessment of Water Depth Variability and Rice Farming Using Remote Sensing
by Rubén Simeón, Constanza Rubio, Antonio Uris, Javier Coronado, Alba Agenjos-Moreno and Alberto San Bautista
Sensors 2025, 25(15), 4860; https://doi.org/10.3390/s25154860 - 7 Aug 2025
Viewed by 85
Abstract
Remote sensing is a widely used tool for crop monitoring to improve water management. Rice, a crop traditionally grown under flooded conditions, requires farmers to understand the relationship between crop reflectance, water depth and final yield. This study focused on seven commercial rice [...] Read more.
Remote sensing is a widely used tool for crop monitoring to improve water management. Rice, a crop traditionally grown under flooded conditions, requires farmers to understand the relationship between crop reflectance, water depth and final yield. This study focused on seven commercial rice fields in 2022 and six in 2023, analyzing the correlations between water depth and Sentinel-2 reflectance over two growing seasons in Valencia, Spain. During the tillering stage across both seasons, water depth showed positive correlations with visible bands and negative correlations with NIR and SWIR bands. There were no correlations with the indices NDVI, GNDVI, NDRE and NDWI. The NIR band showed significant correlations across both seasons, with R2 values of 0.69 and 0.71, respectively. In addition, the calculation of NIR anomalies for each field proved to be a good indicator of final yield anomalies. In 2022, anomalies above 10% corresponded to yield deviations above 500 kg·ha−1, while in 2023, anomalies above 15% were associated with yield deviations above 1000 kg·ha−1. The response of final yield to water level was positive up to average values of 9 cm. The use of the NIR band during the rice crop tillering stage can support farmers in improving irrigation management. Full article
(This article belongs to the Special Issue Remote Sensing for Crop Growth Monitoring)
Show Figures

Figure 1

Back to TopTop