Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = isosilybin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 10002 KiB  
Article
Silymarin as a Therapeutic Agent for Hepatocellular Carcinoma: A Multi-Approach Computational Study
by Ouided Benslama, Sabrina Lekmine, Hamza Moussa, Hichem Tahraoui, Mohammad Shamsul Ola, Jie Zhang and Abdeltif Amrane
Metabolites 2025, 15(1), 53; https://doi.org/10.3390/metabo15010053 - 15 Jan 2025
Cited by 2 | Viewed by 1638
Abstract
Background: Hepatocellular carcinoma (HCC) is a prevalent and lethal form of liver cancer with limited treatment options. Silymarin, a flavonoid complex derived from milk thistle, has shown promise in liver disease treatment due to its antioxidant, anti-inflammatory, and anticancer properties. This study aims [...] Read more.
Background: Hepatocellular carcinoma (HCC) is a prevalent and lethal form of liver cancer with limited treatment options. Silymarin, a flavonoid complex derived from milk thistle, has shown promise in liver disease treatment due to its antioxidant, anti-inflammatory, and anticancer properties. This study aims to explore the therapeutic potential of silymarin in HCC through a comprehensive in silico approach. Methods: This study employed a network pharmacology approach to identify key molecular targets of silymarin in HCC. The Genecards and Metascape databases were used for target identification and functional annotation. Molecular docking analysis was conducted on the primary silymarin components against VEGFA and SRC proteins, which are critical in HCC progression. MD simulations followed to assess the stability and interactions of the docked complexes. Results: Network pharmacology analysis identified several key molecular targets and pathways implicated in HCC. The molecular docking results revealed strong binding affinities of silymarin components to VEGFA and SRC, with Silybin A and Isosilybin B showing the highest affinities. MD simulations confirmed the stability of these interactions, indicating potential inhibitory effects on HCC progression. Conclusions: This study provides a comprehensive in silico evaluation of silymarin’s therapeutic potential in HCC. The findings suggest that silymarin, particularly its components Silybin A and Isosilybin B, may effectively target VEGFA and SRC proteins, offering a promising avenue for HCC treatment. Further experimental validation is warranted to confirm these findings and facilitate the development of silymarin-based therapeutics for HCC. Full article
(This article belongs to the Special Issue Metabolism of Bioactives and Natural Products)
Show Figures

Figure 1

9 pages, 1360 KiB  
Article
Determination of Flavonolignan Compositional Ratios in Silybum marianum (Milk Thistle) Extracts Using High-Performance Liquid Chromatography
by Wei Chen, Xi Zhao, Zhenghua Huang, Shihui Luo, Xuguang Zhang, Wei Sun, Tao Lan and Ruikun He
Molecules 2024, 29(13), 2949; https://doi.org/10.3390/molecules29132949 - 21 Jun 2024
Cited by 4 | Viewed by 1689
Abstract
Milk thistle is one of the most popular ingredients in the liver protection products market. Silymarin is the main component of milk thistle and contains multiple isomers. There have been few studies focusing on the compositional ratios of silymarin isomers. In this study, [...] Read more.
Milk thistle is one of the most popular ingredients in the liver protection products market. Silymarin is the main component of milk thistle and contains multiple isomers. There have been few studies focusing on the compositional ratios of silymarin isomers. In this study, we developed an HPLC method for the separation and quantification of silymarin isomers, thereby elucidating their compositional ratios. Through the analysis of more than 40 milk thistle extract products on the market, we found that the ratios, specifically Ratio 1 (the silybin B content to the silybin A content, SBNB/SBNA) and Ratio 2 (the sum of the contents of silybin B and isosilybin B to the sum of the contents of silybin A and isosilybin A, (SBNB + IBNB)/(SBNA + IBNA)), are highly consistent across milk thistle extracts, averaging approximately 1.58 and 1.28, respectively. Furthermore, such ratios were verified in milk thistle seed samples. This study introduces significant findings concerning the stable ratios among silymarin isomers in milk thistle extracts and seeds, thereby offering an innovative approach for quality assurance of milk thistle extracts. Full article
(This article belongs to the Special Issue Analysis and Application of Active Compounds in Food)
Show Figures

Graphical abstract

23 pages, 6585 KiB  
Article
Cheminformatics Strategies Unlock Marburg Virus VP35 Inhibitors from Natural Compound Library
by Isra M. Alsaady, Leena H. Bajrai, Thamir A. Alandijany, Hattan S. Gattan, Mai M. El-Daly, Sarah A. Altwaim, Rahaf T. Alqawas, Vivek Dhar Dwivedi and Esam I. Azhar
Viruses 2023, 15(8), 1739; https://doi.org/10.3390/v15081739 - 15 Aug 2023
Cited by 16 | Viewed by 3333
Abstract
The Ebola virus and its close relative, the Marburg virus, both belong to the family Filoviridae and are highly hazardous and contagious viruses. With a mortality rate ranging from 23% to 90%, depending on the specific outbreak, the development of effective antiviral interventions [...] Read more.
The Ebola virus and its close relative, the Marburg virus, both belong to the family Filoviridae and are highly hazardous and contagious viruses. With a mortality rate ranging from 23% to 90%, depending on the specific outbreak, the development of effective antiviral interventions is crucial for reducing fatalities and mitigating the impact of Marburg virus outbreaks. In this investigation, a virtual screening approach was employed to evaluate 2042 natural compounds for their potential interactions with the VP35 protein of the Marburg virus. Average and worst binding energies were calculated for all 20 poses, and compounds that exhibited binding energies <−6 kcal/mol in both criteria were selected for further analysis. Based on binding energies, only six compounds (Estradiol benzoate, INVEGA (paliperidone), Isosilybin, Protopanaxadiol, Permethrin, and Bufalin) were selected for subsequent investigations, focusing on interaction analysis. Among these selected compounds, Estradiol benzoate, INVEGA (paliperidone), and Isosilybin showed strong hydrogen bonds, while the others did not. In this study, the compounds Myricetin, Isosilybin, and Estradiol benzoate were subjected to a molecular dynamics (MD) simulation and free binding energy calculation using MM/GBSA analysis. The reference component Myricetin served as a control. Estradiol benzoate exhibited the most stable and consistent root-mean-square deviation (RMSD) values, whereas Isosilybin showed significant fluctuations in RMSD. The compound Estradiol benzoate exhibited the lowest ΔG binding free energy (−22.89 kcal/mol), surpassing the control compound’s binding energy (−9.29 kcal/mol). Overall, this investigation suggested that Estradiol benzoate possesses favorable binding free energies, indicating a potential inhibitory mechanism against the VP35 protein of the Marburg virus. The study proposes that these natural compounds could serve as a therapeutic option for preventing Marburg virus infection. However, experimental validation is required to further corroborate these findings. Full article
(This article belongs to the Special Issue Vaccines and Treatments for Viral Hemorrhagic Fevers)
Show Figures

Figure 1

18 pages, 2150 KiB  
Article
Investigating the Contribution of Major Drug-Metabolising Enzymes to Possum-Specific Fertility Control
by Ravneel R. Chand, Mhairi Nimick, Belinda Cridge and Rhonda J. Rosengren
Int. J. Mol. Sci. 2023, 24(11), 9424; https://doi.org/10.3390/ijms24119424 - 29 May 2023
Viewed by 1557
Abstract
The potential to improve the effectiveness and efficiency of potential oestrogen-based oral contraceptives (fertility control) for possums was investigated by comparing the inhibitory potential of hepatic CYP3A and UGT2B catalytic activity using a selected compound library (CYP450 inhibitor-based compounds) in possums to that [...] Read more.
The potential to improve the effectiveness and efficiency of potential oestrogen-based oral contraceptives (fertility control) for possums was investigated by comparing the inhibitory potential of hepatic CYP3A and UGT2B catalytic activity using a selected compound library (CYP450 inhibitor-based compounds) in possums to that of three other species (mouse, avian, and human). The results showed higher CYP3A protein levels in possum liver microsomes compared to other test species (up to a 4-fold difference). Moreover, possum liver microsomes had significantly higher basal p-nitrophenol glucuronidation activity than other test species (up to an 8-fold difference). However, no CYP450 inhibitor-based compounds significantly decreased the catalytic activity of possum CYP3A and UGT2B below the estimated IC50 and 2-fold IC50 values and were therefore not considered to be potent inhibitors of these enzymes. However, compounds such as isosilybin (65%), ketoconazole (72%), and fluconazole (74%) showed reduced UGT2B glucuronidation activity in possums, mainly at 2-fold IC50 values compared to the control (p < 0.05). Given the structural features of these compounds, these results could provide opportunities for future compound screening. More importantly, however, this study provided preliminary evidence that the basal activity and protein content of two major drug-metabolising enzymes differ in possums compared to other test species, suggesting that this could be further exploited to reach the ultimate goal: a potential target-specific fertility control for possums in New Zealand. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 15356 KiB  
Article
The Effects of Hydro-Priming and Colonization with Piriformospora indica and Azotobacter chroococcum on Physio-Biochemical Traits, Flavonolignans and Fatty Acids Composition of Milk Thistle (Silybum marianum) under Saline Conditions
by Iraj Yaghoubian, Mohammed Antar, Saeid Ghassemi, Seyed Ali Mohammad Modarres-Sanavy and Donald L. Smith
Plants 2022, 11(10), 1281; https://doi.org/10.3390/plants11101281 - 10 May 2022
Cited by 16 | Viewed by 3025
Abstract
Salinity is an important challenge around the world, effecting all physiological and biochemical processes of plants. It seems that seed priming can diminish the negative impacts of salinity. To study the effects of hydro-priming and inoculation with Piriformospora indica (Pi) and Azotobacter chroococcum [...] Read more.
Salinity is an important challenge around the world, effecting all physiological and biochemical processes of plants. It seems that seed priming can diminish the negative impacts of salinity. To study the effects of hydro-priming and inoculation with Piriformospora indica (Pi) and Azotobacter chroococcum (Az) on physio-biochemical traits, flavonolignans and fatty acids composition of milk thistle under saline conditions, a greenhouse experiment was carried out. Our results indicated that under salinity, seed priming, especially Pi, improved physio-biochemical properties in milk thistle. Under 120 mM NaCl, inoculation with Pi increased membrane stability index (MSI) and relative water content (RWC) (by 21.86 and 33.43%, respectively). However, peroxidase (POX) (5.57- and 5.68-fold in roots and leaves, respectively), superoxide dismutase (SOD) (4.74- and 4.44-fold in roots and leaves, respectively), catalase (CAT) (6.90- and 8.50-fold in roots and leaves, respectively) and ascorbate peroxidase (APX) (5.61- and 5.68-fold in roots and leaves, respectively) activities increased with increasing salinity. Contrary to salinity, hydro-priming with Az and Pi positively altered all these traits. The highest content of the osmolytes, adenosine triphosphate (ATP) content and rubisco activity were recorded in Pi treatments under 120 mM NaCl. Stearic acid (20.24%), oleic acid (21.06%) and palmitic acid (10.48%) increased, but oil content (3.81%), linolenic and linoleic acid content (22.21 and 15.07%, respectively) decreased under saline conditions. Inoculations of Pi positively altered all these traits. The present study indicated that seed priming with Pi under 120 mM NaCl resulted in maximum silychristin, taxidolin, silydianin, isosilybin, silybin and silymarin of milk thistle seeds. Full article
(This article belongs to the Topic Plant Responses and Tolerance to Salinity Stress)
Show Figures

Figure 1

12 pages, 3251 KiB  
Article
Antiviral Efficacy of Selected Natural Phytochemicals against SARS-CoV-2 Spike Glycoprotein Using Structure-Based Drug Designing
by Bandar Hamad Aloufi, Mejdi Snoussi and Abdel Moneim E. Sulieman
Molecules 2022, 27(8), 2401; https://doi.org/10.3390/molecules27082401 - 8 Apr 2022
Cited by 6 | Viewed by 3125
Abstract
SARS-CoV-2 is a highly virulent coronavirus that first surfaced in late 2019 and has since created a pandemic of the acute respiratory sickness known as “coronavirus disease 2019” (COVID-19), posing a threat to human health and public safety. S-RBD is a coronaviral protein [...] Read more.
SARS-CoV-2 is a highly virulent coronavirus that first surfaced in late 2019 and has since created a pandemic of the acute respiratory sickness known as “coronavirus disease 2019” (COVID-19), posing a threat to human health and public safety. S-RBD is a coronaviral protein that is essential for a coronavirus (CoV) to bind and penetrate into host cells. As a result, it has become a popular pharmacological target. The goal of this study was to find potential candidates for anti-coronavirus disease 2019 (COVID-19) drugs by targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S-RBD with novel bioactive compounds and molecular interaction studies of 15,000 phytochemicals belonging to different flavonoid subgroups. A spike protein crystal structure attached to the ACE2 structure was obtained from the PDB database. A library of 15,000 phytochemicals was made by collecting compounds from different databases, such as the Zinc-database, PubChem-database, and MPD3-database. This library was docked against a receptor binding domain of a spike glycoprotein through the Molecular Operating Environment (MOE). The top drug candidates Phylloflavan, Milk thistle, Ilexin B and Isosilybin B, after virtual screening, were selected on the basis of the least binding score. Phylloflavan ranked as the top compound because of its least binding affinity score of −14.09 kcal/mol. In silico studies showed that all those compounds showed good activity and could be used as an immunological response with no bioavailability issues. Absorption, distribution, metabolism, excretion and a toxicological analysis were conducted through SwissADME. Stability and effectiveness of the docked complexes were elucidated by performing the 100 ns molecular dynamic simulation through the Desmond package. Full article
(This article belongs to the Special Issue Bioactivities and In Silico Study of Phytochemicals)
Show Figures

Figure 1

45 pages, 3796 KiB  
Review
Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners
by Vladimír Křen
Int. J. Mol. Sci. 2021, 22(15), 7885; https://doi.org/10.3390/ijms22157885 - 23 Jul 2021
Cited by 26 | Viewed by 5223
Abstract
This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, [...] Read more.
This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, preparative separation and chemical reactions. We demonstrated the specific activities of the respective diastereomers of flavonolignans and also the enantiomers of their 2,3-dehydro derivatives in the 3D anisotropic systems typically represented by biological systems. In vivo, silymarin flavonolignans do not act as redox antioxidants, but they play a role as specific ligands of biological targets, according to the “lock-and-key” concept. Estrogenic, antidiabetic, anticancer, antiviral, and antiparasitic effects have been demonstrated in optically pure flavonolignans. Potential application of pure flavonolignans has also been shown in cardiovascular and neurological diseases. Inhibition of drug-metabolizing enzymes and modulation of multidrug resistance activity by these compounds are discussed in detail. The future of “silymarin applications” lies in the use of optically pure components that can be applied directly or used as valuable lead structures, and in the exploration of their true molecular effects. Full article
(This article belongs to the Special Issue Flavonoids)
Show Figures

Graphical abstract

11 pages, 276 KiB  
Article
Dose Effect of Milk Thistle (Silybum marianum) Seed Cakes on the Digestibility of Nutrients, Flavonolignans and the Individual Components of the Silymarin Complex in Horses
by Hana Dockalova, Ladislav Zeman, Daria Baholet, Andrej Batik, Sylvie Skalickova and Pavel Horky
Animals 2021, 11(6), 1687; https://doi.org/10.3390/ani11061687 - 5 Jun 2021
Cited by 6 | Viewed by 4993
Abstract
Milk thistle seeds contain a mixture of flavonoids known as silymarin, which consists of silybin, isosilybin, silychristine, and silydianin. Until now, there has been no evidence of monitoring the digestibility of silymarin complex in horses. The aim of the research was to evaluate [...] Read more.
Milk thistle seeds contain a mixture of flavonoids known as silymarin, which consists of silybin, isosilybin, silychristine, and silydianin. Until now, there has been no evidence of monitoring the digestibility of silymarin complex in horses. The aim of the research was to evaluate the digestibility of silymarin complex and the effect of nutrient digestibility in horses. Different daily feed doses (FD) of milk thistle expeller (0 g, 100 g, 200 g, 400 g, 700 g) were administered to five mares kept under the same conditions and at the same feed rations. Digestibility of silymarin complex was monitored by HPLC-UV. Digestible energy (DE), crude protein, crude fat, crude fiber, nitrogen-free extract (NFE), crude ash, calcium (Ca), and phosphorus (P) were determined according ISO/IEC 17025:2017. The biochemical profile of blood plasma (total protein, albumin, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), bilirubin, total cholesterol, HDL cholesterol, LDL cholesterol, triacyl glyceride (TAG), non-esterified fatty acid (NEFA), creatine kinase (CK), creatinine, urea, glutathione peroxidase (GSH-Px), total antioxidant status (TAS), glucose, calcium, and inorganic phosphate) was investigated. Moreover, the flavonolignans of the silymarin complex in plasma were detected. Statistically significant differences (p ≤ 0.05) were found between daily doses of milk thistle expellers in digestibilities. Our findings showed the digestibility of flavonolignans increased with the daily dose and then stagnated with the dose of milk thistle seed cakes at 700 g/day. Full article
(This article belongs to the Section Equids)
13 pages, 2090 KiB  
Article
Identification of Human Sulfotransferases Active towards Silymarin Flavonolignans and Taxifolin
by Jiří Vrba, Barbora Papoušková, Pavel Kosina, Kateřina Lněničková, Kateřina Valentová and Jitka Ulrichová
Metabolites 2020, 10(8), 329; https://doi.org/10.3390/metabo10080329 - 12 Aug 2020
Cited by 16 | Viewed by 3476
Abstract
Natural phenolic compounds are known to be metabolized by phase II metabolic reactions. In this study, we examined the in vitro sulfation of the main constituents of silymarin, an herbal remedy produced from the fruits of the milk thistle. The study focused on [...] Read more.
Natural phenolic compounds are known to be metabolized by phase II metabolic reactions. In this study, we examined the in vitro sulfation of the main constituents of silymarin, an herbal remedy produced from the fruits of the milk thistle. The study focused on major flavonolignan constituents, including silybin A, silybin B, isosilybin A, isosilybin B, silychristin, and silydianin, as well as the flavonoid taxifolin. Using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS), individual flavonolignans and taxifolin were found to be sulfated by human liver and human intestinal cytosols. Moreover, experiments with recombinant enzymes revealed that human sulfotransferases (SULTs) 1A1*1, 1A1*2, 1A2, 1A3, 1B1, 1C4, and 1E1 catalyzed the sulfation of all of the tested compounds, with the exception of silydianin, which was not sulfated by SULT1B1 and SULT1C4. The sulfation products detected were monosulfates, of which some of the major ones were identified as silybin A 20-O-sulfate, silybin B 20-O-sulfate, and isosilybin A 20-O-sulfate. Further, we also observed the sulfation of the tested compounds when they were tested in the silymarin mixture. Sulfates of flavonolignans and of taxifolin were produced by incubating silymarin with all of the above SULT enzymes, with human liver and intestinal cytosols, and also with human hepatocytes, even though the spectrum and amount of the sulfates varied among the metabolic models. Considering our results and the expression patterns of human sulfotransferases in metabolic tissues, we conclude that flavonolignans and taxifolin can potentially undergo both intestinal and hepatic sulfation, and that SULTs 1A1, 1A3, 1B1, and 1E1 could be involved in the biotransformation of the constituents of silymarin. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Graphical abstract

28 pages, 14975 KiB  
Review
Flavolignans from Silymarin as Nrf2 Bioactivators and Their Therapeutic Applications
by Nancy Vargas-Mendoza, Ángel Morales-González, Mauricio Morales-Martínez, Marvin A. Soriano-Ursúa, Luis Delgado-Olivares, Eli Mireya Sandoval-Gallegos, Eduardo Madrigal-Bujaidar, Isela Álvarez-González, Eduardo Madrigal-Santillán and José A. Morales-Gonzalez
Biomedicines 2020, 8(5), 122; https://doi.org/10.3390/biomedicines8050122 - 14 May 2020
Cited by 36 | Viewed by 7152
Abstract
Silymarin (SM) is a mixture of flavolignans extracted from the seeds of species derived from Silybum marianum, commonly known as milk thistle or St. Mary’sthistle. These species have been widely used in the treatment of liver disorders in traditional medicine since ancient [...] Read more.
Silymarin (SM) is a mixture of flavolignans extracted from the seeds of species derived from Silybum marianum, commonly known as milk thistle or St. Mary’sthistle. These species have been widely used in the treatment of liver disorders in traditional medicine since ancient times. Several properties had been attributed to the major SM flavolignans components, identified as silybin, isosilybin, silychristin, isosilychristin, and silydianin. Previous research reported antioxidant and protective activities, which are probably related to the activation of the nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2), known as a master regulator of the cytoprotector response. Nrf2 is a redox-sensitive nuclear transcription factor able to induce the downstream-associated genes. The disruption of Nrf2 signaling has been associated with different pathological conditions. Some identified phytochemicals from SM had shown to participate in the Nrf2 signaling pathway; in particular, they have been suggested as activators that disrupt interactions in the Keap1-Nrf2 system, but also as antioxidants or with additional actions regarding Nrf2 regulation. Thus, the study of these molecules makes them appear attractive as novel targets for the treatment or prevention of several diseases. Full article
(This article belongs to the Section Drug Discovery and Development)
Show Figures

Figure 1

16 pages, 3027 KiB  
Article
Biotransformation of Silymarin Flavonolignans by Human Fecal Microbiota
by Kateřina Valentová, Jaroslav Havlík, Pavel Kosina, Barbora Papoušková, José Diógenes Jaimes, Kristýna Káňová, Lucie Petrásková, Jitka Ulrichová and Vladimír Křen
Metabolites 2020, 10(1), 29; https://doi.org/10.3390/metabo10010029 - 9 Jan 2020
Cited by 33 | Viewed by 5544
Abstract
Flavonolignans occur typically in Silybum marianum (milk thistle) fruit extract, silymarin, which contains silybin, isosilybin, silychristin, silydianin, and their 2,3-dehydroderivatives, together with other minor flavonoids and a polymeric phenolic fraction. Biotransformation of individual silymarin components by human microbiota was studied ex vivo, using [...] Read more.
Flavonolignans occur typically in Silybum marianum (milk thistle) fruit extract, silymarin, which contains silybin, isosilybin, silychristin, silydianin, and their 2,3-dehydroderivatives, together with other minor flavonoids and a polymeric phenolic fraction. Biotransformation of individual silymarin components by human microbiota was studied ex vivo, using batch incubations inoculated by fecal slurry. Samples at selected time points were analyzed by ultrahigh-performance liquid chromatography equipped with mass spectrometry. The initial experiment using a concentration of 200 mg/L showed that flavonolignans are resistant to the metabolic action of intestinal microbiota. At the lower concentration of 10 mg/L, biotransformation of flavonolignans was much slower than that of taxifolin, which was completely degraded after 16 h. While silybin, isosilybin, and 2,3-dehydrosilybin underwent mostly demethylation, silychristin was predominantly reduced. Silydianin, 2,3-dehydrosilychristin and 2,3-dehydrosilydianin were reduced, as well, and decarbonylation and cysteine conjugation proceeded. No low-molecular-weight phenolic metabolites were detected for any of the compounds tested. Strong inter-individual differences in the biotransformation profile were observed among the four fecal-material donors. In conclusion, the flavonolignans, especially at higher (pharmacological) doses, are relatively resistant to biotransformation by gut microbiota, which, however, depends strongly on the individual structures of these isomeric compounds, but also on the stool donor. Full article
(This article belongs to the Special Issue Gut Metabolism of Natural Products)
Show Figures

Figure 1

12 pages, 652 KiB  
Article
Preparation of Retinoyl-Flavonolignan Hybrids and Their Antioxidant Properties
by Christopher S. Chambers, David Biedermann, Kateřina Valentová, Lucie Petrásková, Jitka Viktorová, Marek Kuzma and Vladimír Křen
Antioxidants 2019, 8(7), 236; https://doi.org/10.3390/antiox8070236 - 23 Jul 2019
Cited by 14 | Viewed by 4897
Abstract
Antioxidants protect the structural and functional components in organisms against oxidative stress. Most antioxidants are of plant origin as the plants are permanently exposed to oxidative stress (UV radiation, photosynthetic reactions). Both carotenoids and flavonoids are prominent antioxidant and anti-radical agents often occurring [...] Read more.
Antioxidants protect the structural and functional components in organisms against oxidative stress. Most antioxidants are of plant origin as the plants are permanently exposed to oxidative stress (UV radiation, photosynthetic reactions). Both carotenoids and flavonoids are prominent antioxidant and anti-radical agents often occurring together in the plant tissues and acting in lipophilic and hydrophilic milieu, respectively. They are complementary in their anti-radical activity. This study describes the synthesis of a series of hybrid ester conjugates of retinoic acid with various flavonolignans, such as silybin, 2,3-dehydrosilybin and isosilybin. Antioxidant/anti-radical activities and bio-physical properties of novel covalent carotenoid-flavonoid hybrids, as well as various mixtures of the respective parent components, were investigated. Retinoyl conjugates with silybin—which is the most important flavonolignan in silymarin complex—(and its pure diastereomers) displayed better 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than both the parent compounds and their equimolar mixtures. Full article
(This article belongs to the Special Issue Carotenoids)
Show Figures

Graphical abstract

4 pages, 236 KiB  
Proceeding Paper
2,3-Dehydroderivatives of Silymarin Flavonolignans: Prospective Natural Compounds for the Prevention of Chronic Diseases
by Kateřina Valentová, David Biedermann and Vladimír Křen
Proceedings 2019, 11(1), 21; https://doi.org/10.3390/proceedings2019011021 - 17 Apr 2019
Cited by 4 | Viewed by 1785
Abstract
Silybum marianum fruit extract silymarin displays various biological activities, which are attributed mostly to its major component silybin. However, silymarin contain several other isomeric flavonolignans (isosilybin, silychristin, silydianin) and their oxidation products, the 2,3-dehydroflavonolignans (2,3-dehydrosilybin, 2,3-dehydrosilychristin, 2,3-dehydrosilydianin). The latter compounds were found to [...] Read more.
Silybum marianum fruit extract silymarin displays various biological activities, which are attributed mostly to its major component silybin. However, silymarin contain several other isomeric flavonolignans (isosilybin, silychristin, silydianin) and their oxidation products, the 2,3-dehydroflavonolignans (2,3-dehydrosilybin, 2,3-dehydrosilychristin, 2,3-dehydrosilydianin). The latter compounds were found to be 1-2 orders of magnitude more efficient radical scavengers, reducing, chelating, cytoprotective, anti-aging, anti-cancer and anti-angiogenic agents than the parent flavonolignans. Although 2,3-dehydroflavonolignans occur in silymarin as minorities, they seem to be responsible for the majority of the biological activity and therefore have potential for the prevention of chronic diseases. Full article
(This article belongs to the Proceedings of CA16112 - Luxemburg 2019)
Show Figures

Figure 1

12 pages, 870 KiB  
Article
Skin Protective Activity of Silymarin and its Flavonolignans
by Jitka Vostálová, Eva Tinková, David Biedermann, Pavel Kosina, Jitka Ulrichová and Alena Rajnochová Svobodová
Molecules 2019, 24(6), 1022; https://doi.org/10.3390/molecules24061022 - 14 Mar 2019
Cited by 62 | Viewed by 10323
Abstract
Silybum marianum (L.) is a medicinal plant traditionally used in treatment of liver disorders. In last decades, silymarin (SM), a standardized extract from S. marianum seeds has been studied for its dermatological application, namely for UVB-protective properties. However, information on SM and its [...] Read more.
Silybum marianum (L.) is a medicinal plant traditionally used in treatment of liver disorders. In last decades, silymarin (SM), a standardized extract from S. marianum seeds has been studied for its dermatological application, namely for UVB-protective properties. However, information on SM and its polyphenols effect on activity of enzymes participating in the (photo)aging process is limited. Therefore, evaluation of SM and its flavonolignans potential to inhibit collagenase, elastase, and hyaluronidase in tube tests was the goal of this study. The antioxidant and UV screening properties of SM and its flavonolignans silybin, isosilybin, silydianin, silychristin and 2,3-dehydrosilybin (DHSB) were also evaluated by a DPPH assay and spectrophotometrical measurement. DHSB showed the highest ability to scavenge DPPH radical and also revealed the highest UVA protection factor (PF-UVA) that corresponds with its absorption spectrum. SM and studied flavonolignans were found to exhibit anti-collagenase and anti-elastase activity. The most potent flavonolignan was DHSB. None of studied flavonolignans or SM showed anti-hyaluronidase activity. Our results suggest that SM and its flavonolignans may be useful agents for skin protection against the harmful effects of full-spectrum solar radiation including slowing down skin (photo)aging. Full article
(This article belongs to the Special Issue Silymarin and Derivatives: From Biosynthesis to Health Benefits)
Show Figures

Graphical abstract

20 pages, 3932 KiB  
Article
Dermal Delivery of Selected Polyphenols from Silybum marianum. Theoretical and Experimental Study
by Pavel Kosina, Markéta Paloncýová, Alena Rajnochová Svobodová, Bohumil Zálešák, David Biedermann, Jitka Ulrichová and Jitka Vostálová
Molecules 2019, 24(1), 61; https://doi.org/10.3390/molecules24010061 - 24 Dec 2018
Cited by 18 | Viewed by 5098
Abstract
Silymarin is a well-known standardized extract from the seeds of milk thistle (Silybum marianum L., Asteraceae) with a pleiotropic effect on human health, including skin anticancer potential. Detailed characterization of flavonolignans properties affecting interactions with human skin was of interest. The partition [...] Read more.
Silymarin is a well-known standardized extract from the seeds of milk thistle (Silybum marianum L., Asteraceae) with a pleiotropic effect on human health, including skin anticancer potential. Detailed characterization of flavonolignans properties affecting interactions with human skin was of interest. The partition coefficients log Pow of main constitutive flavonolignans, taxifolin and their respective dehydro derivatives were determined by a High Performance Liquid Chromatography (HPLC) method and by mathematical (in silico) approaches in n-octanol/water and model lipid membranes. These parameters were compared with human skin intake ex vivo. The experimental log Pow values for individual diastereomers were estimated for the first time. The replacement of n-octanol with model lipid membranes in the theoretical lipophilicity estimation improved the prediction strength. During transdermal transport, all the studied compounds permeated the human skin ex vivo; none of them reached the acceptor liquid. Both experimental/theoretical tools allowed the studied polyphenols to be divided into two groups: low (taxifolin, silychristin, silydianin) vs. high (silybin, dehydrosilybin, isosilybin) lipophilicity and skin intake. In silico predictions can be usefully applied for estimating general lipophilicity trends, such as skin penetration or accumulation predictions. However, the theoretical models cannot yet provide the dermal delivery differences of compounds with very similar physico-chemical properties; e.g., between diastereomers. Full article
(This article belongs to the Special Issue Silymarin and Derivatives: From Biosynthesis to Health Benefits)
Show Figures

Graphical abstract

Back to TopTop