Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,335)

Search Parameters:
Keywords = discharge record

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4476 KiB  
Article
Comprehensive Management of Different Types of Pelvic Fractures Through Multiple Disciplines: A Case Series
by Bharti Sharma, Samantha R. Kiernan, Christian Ugaz Valencia, Omolola Akinsola, Irina Ahn, Agron Zuta, George Agriantonis, Navin D. Bhatia, Kate Twelker, Munirah Hasan, Carrie Garcia, Praise Nesamony, Jasmine Dave, Juan Mestre, Zahra Shafaee, Suganda Phalakornkul, Shalini Arora, Saad Bhatti and Jennifer Whittington
J. Clin. Med. 2025, 14(15), 5593; https://doi.org/10.3390/jcm14155593 - 7 Aug 2025
Viewed by 134
Abstract
Background: Pelvic fractures are complex injuries often associated with significant morbidity and mortality, requiring multidisciplinary management. This case series highlights the presentation, management strategies, and outcomes of patients with pelvic fractures treated at our institution. Methods: The medical records of 13 patients diagnosed [...] Read more.
Background: Pelvic fractures are complex injuries often associated with significant morbidity and mortality, requiring multidisciplinary management. This case series highlights the presentation, management strategies, and outcomes of patients with pelvic fractures treated at our institution. Methods: The medical records of 13 patients diagnosed with pelvic fractures from 1 January 2020 through 31 December 2023 were retrospectively reviewed. Demographic data, mechanism of injury, fracture pattern, associated injuries, treatment modalities, and outcomes were analyzed. Results: A total of 13 patients were included in the study, with ages ranging from 18–95 years. Six of the patients were male and seven were female. The most common mechanisms of injury were falls and pedestrians struck by vehicles. Associated injuries included traumatic brain injury (TBI), fractures including extremities, ribs, and vertebrae, visceral injury, and spinal cord injury. Treatment strategies ranged from conservative, non-surgical management to operative intervention, including interventional radiology embolization, external traction, open reduction and internal fixation (ORIF), and percutaneous screw stabilization. Additional interventions included chest tube placement, exploratory laparotomy, and craniectomy. Two patients died while in the hospital, one was discharged to a shelter, and the remaining 10 were discharged to various inpatient rehab facilities. Conclusions: Pelvic fractures pose significant clinical challenges due to their complexity and associated injuries. This case series underscores the importance of multidisciplinary intervention and treatment strategies in optimizing outcomes. Further studies should focus on the effectiveness of interventions, utilization of new technology, and multidisciplinary team planning. Full article
Show Figures

Figure 1

23 pages, 11564 KiB  
Article
Cloud-Based Assessment of Flash Flood Susceptibility, Peak Runoff, and Peak Discharge on a National Scale with Google Earth Engine (GEE)
by Ivica Milevski, Bojana Aleksova, Aleksandar Valjarević and Pece Gorsevski
Atmosphere 2025, 16(8), 945; https://doi.org/10.3390/atmos16080945 - 7 Aug 2025
Viewed by 410
Abstract
Flash floods, exacerbated by climate change and land use alterations, are among the most destructive natural hazards globally, leading to significant damage and loss of life. In this context, the Flash Flood Potential Index (FFPI), which is a terrain and land surface-based model, [...] Read more.
Flash floods, exacerbated by climate change and land use alterations, are among the most destructive natural hazards globally, leading to significant damage and loss of life. In this context, the Flash Flood Potential Index (FFPI), which is a terrain and land surface-based model, and Google Earth Engine (GEE) were used to assess flood-prone zones across North Macedonia’s watersheds. The presented GEE-based assessment was accomplished by a custom script that automates the FFPI calculation process by integrating key factors derived from publicly available sources. These factors, which define susceptibility to torrential floods, include slope (Copernicus GLO-30 DEM), land cover (Copernicus GLO-30 DEM), soil type (SoilGrids), vegetation (ESA World Cover), and erodibility (CHIRPS). The spatial distribution of average FFPI values across 1396 small catchments (10–100 km2) revealed that a total of 45.4% of the area exhibited high to very high susceptibility, with notable spatial variability. The CHIRPS rainfall data (2000–2024) that combines satellite imagery and in situ measurements was used to estimate peak 24 h runoff and discharge. To improve the accuracy of CHIRPS, the data were adjusted by 30–50% to align with meteorological station records, along with normalized FFPI values as runoff coefficients. Validation against 328 historical river flood and flash flood records confirmed that 73.2% of events aligned with moderate to very high flash flood susceptibility catchments, underscoring the model’s reliability. Thus, the presented cloud-based scenario highlights the potential of the GEE’s efficacy in scalability and robustness for flash flood modeling and regional risk management at national scale. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

30 pages, 5262 KiB  
Article
Alternative Hydraulic Modeling Method Based on Recurrent Neural Networks: From HEC-RAS to AI
by Andrei Mihai Rugină
Hydrology 2025, 12(8), 207; https://doi.org/10.3390/hydrology12080207 - 6 Aug 2025
Viewed by 259
Abstract
The present study explores the application of RNNs for the prediction and propagation of flood waves along a section of the Bârsa River, Romania, as a fast alternative to classical hydraulic models, aiming to identify new ways to alert the population. Five neural [...] Read more.
The present study explores the application of RNNs for the prediction and propagation of flood waves along a section of the Bârsa River, Romania, as a fast alternative to classical hydraulic models, aiming to identify new ways to alert the population. Five neural architectures were analyzed as follows: S-RNN, LSTM, GRU, Bi-LSTM, and Bi-GRU. The input data for the neural networks were derived from 2D hydraulic simulations conducted using HEC-RAS software, which provided the necessary training data for the models. It should be mentioned that the input data for the hydraulic model are synthetic hydrographs, derived from the statistical processing of recorded floods. Performance evaluation was based on standard metrics such as NSE, R2 MSE, and RMSE. The results indicate that all studied networks performed well, with NSE and R2 values close to 1, thus validating their capacity to reproduce complex hydrological dynamics. Overall, all models yielded satisfactory results, making them useful tools particularly the GRU and Bi-GRU architectures, which showed the most balanced behavior, delivering low errors and high stability in predicting peak discharge, water level, and flood wave volume. The GRU and Bi-GRU networks yielded the best performance, with RMSE values below 1.45, MAE under 0.3, and volume errors typically under 3%. On the other hand, LSTM architecture exhibited the most significant instability and errors, especially in estimating the flood wave volume, often having errors exceeding 9% in some sections. The study concludes by identifying several limitations, including the heavy reliance on synthetic data and its local applicability, while also proposing solutions for future analyses, such as the integration of real-world data and the expansion of the methodology to diverse river basins thus providing greater significance to RNN models. The final conclusions highlight that RNNs are powerful tools in flood risk management, contributing to the development of fast and efficient early warning systems for extreme hydrological and meteorological events. Full article
Show Figures

Figure 1

29 pages, 1494 KiB  
Article
Advanced and Robust Numerical Framework for Transient Electrohydrodynamic Discharges in Gas Insulation Systems
by Philipp Huber, Julian Hanusrichter, Paul Freden and Frank Jenau
Eng 2025, 6(8), 194; https://doi.org/10.3390/eng6080194 - 6 Aug 2025
Viewed by 162
Abstract
For the precise description of gas physical processes in high-voltage direct current (HVDC) transmission, an advanced and robust numerical framework for the simulation of transient particle densities in the course of corona discharges is developed in this work. The aim is the scalable [...] Read more.
For the precise description of gas physical processes in high-voltage direct current (HVDC) transmission, an advanced and robust numerical framework for the simulation of transient particle densities in the course of corona discharges is developed in this work. The aim is the scalable and consistent modeling of the space charge density under realistic conditions. The core component of the framework is a discontinuous Galerkin method that ensures the conservative properties of the underlying hyperbolic problem. The space charge density at the electrode surface is imposed as a dynamic boundary condition via Lagrange multipliers. To increase the numerical stability and convergence rate, a homotopy approach is also integrated. For the experimental validation, a measurement concept was realised that uses a subtraction method to specifically remove the displacement current component in the signal and thus enables an isolated recording of the transient ion current with superimposed voltage stresses. The experimental results on a small scale agree with the numerical predictions and prove the quality of the model. On this basis, the framework is transferred to hybrid HVDC overhead line systems with a bipolar design. In the event of a fault, significant transient space charge densities can be seen there, especially when superimposed with new types of voltage waveforms. The framework thus provides a reliable contribution to insulation coordination in complex HVDC systems and enables the realistic analysis of electrohydrodynamic coupling effects on an industrial scale. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

20 pages, 3135 KiB  
Article
Nonstationary Streamflow Variability and Climate Drivers in the Amur and Yangtze River Basins: A Comparative Perspective Under Climate Change
by Qinye Ma, Jue Wang, Nuo Lei, Zhengzheng Zhou, Shuguang Liu, Aleksei N. Makhinov and Aleksandra F. Makhinova
Water 2025, 17(15), 2339; https://doi.org/10.3390/w17152339 - 6 Aug 2025
Viewed by 145
Abstract
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing [...] Read more.
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing long-term streamflow nonstationarity and its drivers at two key stations—Khabarovsk on the Amur River and Datong on the Yangtze River—representing distinct hydroclimatic settings. We utilized monthly discharge records, meteorological data, and large-scale climate indices to apply trend analysis, wavelet transform, percentile-based extreme diagnostics, lagged random forest regression, and slope-based attribution. The results show that Khabarovsk experienced an increase in winter baseflow from 513 to 1335 m3/s and a notable reduction in seasonal discharge contrast, primarily driven by temperature and cold-region reservoir regulation. In contrast, Datong displayed increased discharge extremes, with flood discharges increasing by +71.9 m3/s/year, equivalent to approximately 0.12% of the mean flood discharge annually, and low discharges by +24.2 m3/s/year in recent decades, shaped by both climate variability and large-scale hydropower infrastructure. Random forest models identified temperature and precipitation as short-term drivers, with ENSO-related indices showing lagged impacts on streamflow variability. Attribution analysis indicated that Khabarovsk is primarily shaped by cold-region reservoir operations in conjunction with temperature-driven snowmelt dynamics, while Datong reflects a combined influence of both climate variability and regulation. These insights may provide guidance for climate-responsive reservoir scheduling and basin-specific regulation strategies, supporting the development of integrated frameworks for adaptive water management under climate change. Full article
(This article belongs to the Special Issue Risks of Hydrometeorological Extremes)
Show Figures

Figure 1

19 pages, 5212 KiB  
Article
Assessing the Land Surface Temperature Trend of Lake Drūkšiai’s Coastline
by Jūratė Sužiedelytė Visockienė, Eglė Tumelienė and Rosita Birvydienė
Land 2025, 14(8), 1598; https://doi.org/10.3390/land14081598 - 5 Aug 2025
Viewed by 139
Abstract
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its [...] Read more.
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its legacy continues to influence the lake’s thermal regime. Using Landsat 8 thermal infrared imagery and NDVI-based methods, we analysed spatial and temporal LST variations from 2013 to 2024. The results indicate persistent temperature anomalies and elevated LST values, particularly in zones previously affected by thermal discharges. The years 2020 and 2024 exhibited the highest average LST values; some years (e.g., 2018) showed lower readings due to localised environmental factors such as river inflow and seasonal variability. Despite a slight stabilisation observed in 2024, temperatures remain higher than those recorded in 2013, suggesting that pre-industrial thermal conditions have not yet been restored. These findings underscore the long-term environmental impacts of industrial activity and highlight the importance of satellite-based monitoring for the sustainable management of land, water resources, and coastal zones. Full article
Show Figures

Figure 1

24 pages, 13038 KiB  
Article
Simulation and Analysis of Electric Thermal Coupling for Corrosion Damage of Metro Traction Motor Bearings
by Haisheng Yang, Zhanwang Shi, Xuelan Wang, Jiahang Zhang, Run Zhang and Hengdi Wang
Machines 2025, 13(8), 680; https://doi.org/10.3390/machines13080680 - 1 Aug 2025
Viewed by 216
Abstract
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown [...] Read more.
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown in subway traction motors is a critical issue in understanding the relationship between shaft current strength and the extent of bearing damage. This paper analyzes the mechanism of impulse discharge that leads to galvanic corrosion damage in bearings at a microscopic level and conducts electric thermal coupling simulations of the traction motor bearing discharge breakdown process. It examines the temperature rise associated with lubricant film discharge breakdown during the dynamic operation of the bearing and investigates how breakdown channel parameters and operational conditions affect the temperature rise in the micro-region of bearing lubrication. Ultimately, the results of the electric thermal coupling simulation are validated through experimental tests. This study revealed that in an electric field environment, the load-bearing area of the outer ring experiences significantly more severe corrosion damage than the inner ring, whereas non-bearing areas remain unaffected by electrolytic corrosion. When the inner ring reaches a speed of 4500_rpm, the maximum widths of electrolytic corrosion pits for the outer and inner rings are measured at 89 um and 51 um, respectively. Additionally, the highest recorded temperatures for the breakdown channels in the outer and inner rings are 932 °C and 802 °C, respectively. Furthermore, as the inner ring speed increases, both the width of the electrolytic corrosion pits and the temperature of the breakdown channels rise. Specifically, at inner ring speeds of 2500_rpm, 3500_rpm, and 4500_rpm, the widths of the electrolytic pits in the outer ring raceway load zone were measured at 34 um, 56 um, and 89 um, respectively. The highest temperatures of the lubrication film breakdown channels were recorded as 612 °C, 788 °C, and 932 °C, respectively. This study provides a theoretical basis and data support for the protective and maintenance practices of traction motor bearings. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

17 pages, 2032 KiB  
Article
The Impact of Hydrological Streamflow Drought on Pollutant Concentration and Its Implications for Sustainability in a Small River in Poland
by Leszek Hejduk, Ewa Kaznowska, Michał Wasilewicz and Agnieszka Hejduk
Sustainability 2025, 17(15), 6995; https://doi.org/10.3390/su17156995 - 1 Aug 2025
Viewed by 222
Abstract
The paper presents the results of investigations into the relationship between selected water quality parameters and hydrological streamflow drought in a small river situated in the Mazovian Lowlands in Poland. As hydrological streamflow drought periods become more frequent in Poland, investigations about the [...] Read more.
The paper presents the results of investigations into the relationship between selected water quality parameters and hydrological streamflow drought in a small river situated in the Mazovian Lowlands in Poland. As hydrological streamflow drought periods become more frequent in Poland, investigations about the relationship between flow and water quality parameters can be an essential contribution to a better understanding of the impact of low flow on the status of water rivers. Data from a three-year study of a small lowland river along with significant agricultural land management was used to analyze the connection between low flows and specific water quality indicators. The separation of low-flow data from water discharge records was achieved using two criteria: Q90% (the discharge value from a flow duration curve) and a minimum low-flow duration of 10 days. During these periods, the concentration of water quality indicators was determined based on collected water samples. In total, 30 samples were gathered and examined for pH, suspended sediments, dissolved substances, hardness, ammonium, nitrates, nitrites, phosphates, total phosphorus, chloride, sulfate, calcium, magnesium, and water temperature during sampling. The study’s main aim was to describe the relation between hydrological streamflow droughts and chosen water quality parameters. The analysis results demonstrate an inverse statistically significant relationship between concentration and low-flow values for total hardness and sulfate. In contrast, there was a direct relationship between nutrient indicators, suspended sediment concentration, and river hydrological streamflow drought. Statistical tests were applied to compare the datasets between years, revealing statistical differences only for nutrient indicators. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

25 pages, 3746 KiB  
Article
Empirical Modelling of Ice-Jam Flood Hazards Along the Mackenzie River in a Changing Climate
by Karl-Erich Lindenschmidt, Sergio Gomez, Jad Saade, Brian Perry and Apurba Das
Water 2025, 17(15), 2288; https://doi.org/10.3390/w17152288 - 1 Aug 2025
Viewed by 251
Abstract
This study introduces a novel methodology for assessing ice-jam flood hazards along river channels. It employs empirical equations that relate non-dimensional ice-jam stage to discharge, enabling the generation of an ensemble of longitudinal profiles of ice-jam backwater levels through Monte-Carlo simulations. These simulations [...] Read more.
This study introduces a novel methodology for assessing ice-jam flood hazards along river channels. It employs empirical equations that relate non-dimensional ice-jam stage to discharge, enabling the generation of an ensemble of longitudinal profiles of ice-jam backwater levels through Monte-Carlo simulations. These simulations produce non-exceedance probability profiles, which indicate the likelihood of various flood levels occurring due to ice jams. The flood levels associated with specific return periods were validated using historical gauge records. The empirical equations require input parameters such as channel width, slope, and thalweg elevation, which were obtained from bathymetric surveys. This approach is applied to assess ice-jam flood hazards by extrapolating data from a gauged reach at Fort Simpson to an ungauged reach at Jean Marie River along the Mackenzie River in Canada’s Northwest Territories. The analysis further suggests that climate change is likely to increase the severity of ice-jam flood hazards in both reaches by the end of the century. This methodology is applicable to other cold-region rivers in Canada and northern Europe, provided similar fluvial geomorphological and hydro-meteorological data are available, making it a valuable tool for ice-jam flood risk assessment in other ungauged areas. Full article
Show Figures

Figure 1

26 pages, 2496 KiB  
Article
Red Cell Distribution Width (RDW), Platelets and Platelet Index MPV/PLT Ratio as Specific Time Point Predictive Variables of Survival Outcomes in COVID-19 Hospitalized Patients
by Despoina Georgiadou, Theodoros Xanthos, Veroniki Komninaka, Rea Xatzikiriakou, Stavroula Baka, Abraham Pouliakis, Aikaterini Spyridaki, Dimitrios Theodoridis, Angeliki Papapanagiotou, Afroditi Karida, Styliani Paliatsiou, Paraskevi Volaki, Despoina Barmparousi, Aikaterini Sakagianni, Nikolaos J. Tsagarakis, Maria Alexandridou, Eleftheria Palla, Christos Kanakaris and Nicoletta M. Iacovidou
J. Clin. Med. 2025, 14(15), 5381; https://doi.org/10.3390/jcm14155381 - 30 Jul 2025
Viewed by 449
Abstract
Background: COVID-19-associated coagulopathy (CAC) is a complex condition, with high rates of thrombosis, high levels of inflammation markers and hypercoagulation (increased levels of fibrinogen and D-Dimer), as well as extensive microthrombosis in the lungs and other organs of the deceased. It resembles, [...] Read more.
Background: COVID-19-associated coagulopathy (CAC) is a complex condition, with high rates of thrombosis, high levels of inflammation markers and hypercoagulation (increased levels of fibrinogen and D-Dimer), as well as extensive microthrombosis in the lungs and other organs of the deceased. It resembles, without being identical, other coagulation disorders such as sepsis-DIC (SIC/DIC), hemophagocyte syndrome (HPS) and thrombotic microangiopathy (TMA). Platelets (PLTs), key regulators of thrombosis, inflammation and immunity, are considered an important risk mediator in COVID-19 pathogenesis. Platelet index MPV/PLT ratio is reported in the literature as more specific in the prognosis of platelet-related systemic thrombogenicity. Studies of MPV/PLT ratio with regards to the severity of COVID-19 disease are limited, and there are no references regarding this ratio to the outcome of COVID-19 disease at specific time points of hospitalization. The aim of this study is to evaluate the relationship of COVID-19 mortality with the red cell distribution width–coefficient of variation (RDW-CV), platelets and MPV/PLT ratio parameters. Methods: Values of these parameters in 511 COVID-19 hospitalized patients were recorded (a) on admission, (b) as mean values of the 1st and 2nd week of hospitalization, (c) over the total duration of hospitalization, (d) as nadir and zenith values, and (e) at discharge. Results: As for mortality (survivors vs. deceased), statistical analysis with ROC curves showed that regarding the values of the parameters on admission, only the RDW-CV baseline was of prognostic value. Platelet parameters, absolute number and MPV/PLT ratio had predictive potential for the disease outcome only as 2nd week values. On the contrary, with regards to disease severity (mild/moderate versus severe/critical), only the MPV/PLT ratio on admission can be used for prognosis, and to a moderate degree. On multivariable logistic regression analysis, only the RDW-CV mean hospitalization value (RDW-CV mean) was an independent and prognostic variable for mortality. Regarding disease severity, the MPV/PLT ratio on admission and RDW-CV mean were independent and prognostic variables. Conclusions: RDW-CV, platelets and MPV/PLT ratio hematological parameters could be of predictive value for mortality and severity in COVID-19 disease, depending on the hospitalization timeline. Full article
(This article belongs to the Section Hematology)
Show Figures

Figure 1

14 pages, 487 KiB  
Article
Sex-Based Differences in Clinical Presentation, Management, and Outcomes in Patients Hospitalized with Pulmonary Embolism: A Retrospective Cohort Study
by Benjamin Troxler, Maria Boesing, Cedrine Kueng, Fabienne Jaun, Joerg Daniel Leuppi and Giorgia Lüthi-Corridori
J. Clin. Med. 2025, 14(15), 5287; https://doi.org/10.3390/jcm14155287 - 26 Jul 2025
Viewed by 285
Abstract
Background/Objectives: Pulmonary embolism (PE) remains a major cause of morbidity and mortality. Despite advances in care, its nonspecific symptoms pose diagnostic and therapeutic challenges. Emerging evidence suggests sex-based differences in PE presentation, management, and outcomes, yet real-world data from European settings remain [...] Read more.
Background/Objectives: Pulmonary embolism (PE) remains a major cause of morbidity and mortality. Despite advances in care, its nonspecific symptoms pose diagnostic and therapeutic challenges. Emerging evidence suggests sex-based differences in PE presentation, management, and outcomes, yet real-world data from European settings remain scarce. This study aimed to investigate sex differences in clinical presentation, diagnostic workup, therapeutic interventions, and outcomes among hospitalized PE patients. Methods: We conducted a retrospective cohort study including all adult patients (≥18 years) admitted with a main diagnosis of acute PE at the Cantonal Hospital Baselland between January 2018 and December 2020. Data were extracted from electronic medical records and included demographics, comorbidities, symptoms, diagnostics, treatments, and outcomes. Sex-based comparisons were performed using univariate analyses. Results: Among 197 patients, 54% were women. Compared to men, women were more often admitted by ambulance (42% n = 45 vs. 24% n = 22, p = 0.009), had more frequent tachycardia (38% n = 41 vs. 23% n = 21, p = 0.024), and received lysis therapy more often (10% n = 11 vs. 2% n = 2, p = 0.023). DVT was more frequently diagnosed in women when sonography was performed (82% n = 49 vs. 64% n = 34, p = 0.035). Men had higher rates of B symptoms, smoking, and family history of PE. Women had longer hospital stays and were more frequently discharged to rehabilitation facilities. No sex differences were found in in-hospital mortality, 6-month rehospitalization, or adherence to diagnostic guidelines. Conclusions: This study reveals sex-based differences in PE presentation and management, suggesting potential disparities in care pathways. Further research is needed to promote equitable, personalized treatment strategies. Full article
(This article belongs to the Special Issue Pulmonary Embolism: Clinical Advances and Future Opportunities)
Show Figures

Figure 1

10 pages, 411 KiB  
Case Report
Combination of Dexmedetomidine and Low-Dose Ketamine in 4 Sugar Gliders (Petaurus breviceps) Undergoing Elective Castration
by Elisa Silvia D’Urso, Monia Martorelli, Giulia Bersanetti, Paolo Selleri and Chiara De Gennaro
Vet. Sci. 2025, 12(8), 699; https://doi.org/10.3390/vetsci12080699 - 25 Jul 2025
Viewed by 266
Abstract
Four entire male sugar gliders (Petaurus breviceps) belonging to the same colony were presented for elective orchiectomy. After clinical examination, dexmedetomidine (120 μg/kg) in combination with ketamine (5 mg/kg) were administered subcutaneously (SC). Once righting and pedal withdrawal reflexes were lost, [...] Read more.
Four entire male sugar gliders (Petaurus breviceps) belonging to the same colony were presented for elective orchiectomy. After clinical examination, dexmedetomidine (120 μg/kg) in combination with ketamine (5 mg/kg) were administered subcutaneously (SC). Once righting and pedal withdrawal reflexes were lost, ringer lactate solution, enrofloxacin and meloxicam were administered SC and a bilateral intratesticular block with lidocaine 0.25% was performed. Heart, respiratory rates and pulse oximetry values were recorded every minute. Onset of sedation, additional use of isoflurane, duration of anaesthesia, duration of surgery, time of recovery after atipamezole administration, quality of recovery and time of food intake were recorded. Postoperative assessment (posture, level of activity, vocalisation, response to manipulation, attention to the surgical wound) was performed hourly until discharge, five hours after surgery. Dexmedetomidine in combination with ketamine provided adequate short-lasting anaesthesia for castration in 3 out of 4 sugar gliders. One sugar glider needed additional isoflurane administration to perform orchiectomy. No perioperative additional analgesia was needed in any sugar glider. Full article
Show Figures

Figure 1

14 pages, 604 KiB  
Article
Functional Benefits of Inpatient Cardiac Rehabilitation After Open Aortic and Valvular Surgery: A Retrospective Cohort Study
by Younji Kim, Suk-Won Song, Ha Lee, Myeong Su Kim, Seoyon Yang and You Gyoung Yi
Healthcare 2025, 13(15), 1816; https://doi.org/10.3390/healthcare13151816 - 25 Jul 2025
Viewed by 219
Abstract
Background/Objectives: Patients undergoing open aortic and valvular surgery often experience postoperative deconditioning, yet research on the role of inpatient cardiac rehabilitation (CR) in this population remains limited. This study aimed to examine the effects of inpatient CR on muscle strength, mobility, psychological well-being, [...] Read more.
Background/Objectives: Patients undergoing open aortic and valvular surgery often experience postoperative deconditioning, yet research on the role of inpatient cardiac rehabilitation (CR) in this population remains limited. This study aimed to examine the effects of inpatient CR on muscle strength, mobility, psychological well-being, and quality of life in patients recovering from open aortic surgery. Methods: We conducted a retrospective study using the medical records of patients who participated in inpatient CR after open aortic surgery. Functional and psychological outcomes were evaluated using the Medical Research Council (MRC) sum score, Timed Up and Go (TUG) test, Five Times Sit-to-Stand test (5STS), Six-Minute Walk Distance (6MWD), Berg Balance Scale (BBS), Modified Barthel Index (MBI), Patient Health Questionnaire-9 (PHQ-9), and the EuroQol-5D (EQ-5D). Pre- and post-rehabilitation scores were compared to assess changes in functional status, mobility, and quality of life. A post-discharge satisfaction survey was also analyzed. Results: A total of 33 patients were included. Significant improvements were observed in MBI (p < 0.001), MRC sum score (p < 0.001), 6MWD (p < 0.001), BBS (p < 0.001), TUG (p = 0.003), 5STS (p < 0.001), EQ-5D (p = 0.011), and PHQ-9 (p = 0.009) following inpatient CR. Patients with lower baseline mobility (6MWD ≤ 120 m) exhibited greater improvement in MBI (p = 0.034). Of the 33 patients, 26 completed the satisfaction survey; most reported high satisfaction, perceived health improvements, and willingness to recommend the program. Conclusions: Inpatient CR following open aortic and valvular surgery resulted in significant gains in muscle strength, mobility, psychological health, and overall quality of life. Patients with greater initial impairment demonstrated especially notable functional improvement, supporting the value of tailored CR in this population. Full article
Show Figures

Figure 1

13 pages, 391 KiB  
Article
The Use of RE-AIM to Evaluate a Pharmacist-Led Transitions of Care Service for Multivisit Patients at a Regional Hospital
by Courtney E. Gamston, Salisa C. Westrick, Mafe Zmajevac, Jingjing Qian, Greg Peden, Dillon Hagan and Kimberly Braxton Lloyd
Pharmacy 2025, 13(4), 99; https://doi.org/10.3390/pharmacy13040099 - 23 Jul 2025
Viewed by 240
Abstract
Pharmacist-led transitions of care (TOC) services decrease preventable hospital readmission. TOC service implementation assessment can inform translation to real-world settings. The purpose of this study was to evaluate the implementation of a TOC service for patients with multiple admissions at a regional hospital [...] Read more.
Pharmacist-led transitions of care (TOC) services decrease preventable hospital readmission. TOC service implementation assessment can inform translation to real-world settings. The purpose of this study was to evaluate the implementation of a TOC service for patients with multiple admissions at a regional hospital using the RE-AIM framework. In this quasi-experimental, non-randomized study, individuals with ≥2 recent hospitalizations received pharmacist-led discharge medication reconciliation and counseling, management of drug-related problems, post-discharge telephonic visits, and social support. The reach, effectiveness, implementation, and maintenance RE-AIM dimensions were assessed using patient and service records. Outcomes included 30-day readmission rates for individuals completing ≥1 outpatient pharmacist visit (intervention) versus those unreachable in the outpatient setting (comparison), completed interventions, implementation features, and service adaptations. Chi-square and Fisher’s exact tests were used for comparison of categorical variables and the t-test was used for continuous variables. From February 2022 to August 2023, 72.7% of the 66 service participants participated in the intervention (reach). Additionally, 30-day readmission was 22.9% (intervention) versus 55.6% (comparison; p = 0.01). In total, 2279 interventions were documented (effectiveness). The service was adapted (implementation) and expanded to include additional populations (maintenance) to enhance sustainability. Based on RE-AIM evaluation, the pharmacist-led TOC intervention appears to be a sustainable solution for addressing readmission in multivisit patients. Full article
(This article belongs to the Section Pharmacy Practice and Practice-Based Research)
Show Figures

Figure 1

25 pages, 6316 KiB  
Article
Integration of Remote Sensing and Machine Learning Approaches for Operational Flood Monitoring Along the Coastlines of Bangladesh Under Extreme Weather Events
by Shampa, Nusaiba Nueri Nasir, Mushrufa Mushreen Winey, Sujoy Dey, S. M. Tasin Zahid, Zarin Tasnim, A. K. M. Saiful Islam, Mohammad Asad Hussain, Md. Parvez Hossain and Hussain Muhammad Muktadir
Water 2025, 17(15), 2189; https://doi.org/10.3390/w17152189 - 23 Jul 2025
Viewed by 804
Abstract
The Ganges–Brahmaputra–Meghna (GBM) delta, characterized by complex topography and hydrological conditions, is highly susceptible to recurrent flooding, particularly in its coastal regions where tidal dynamics hinder floodwater discharge. This study integrates Synthetic Aperture Radar (SAR) imagery with machine learning (ML) techniques to assess [...] Read more.
The Ganges–Brahmaputra–Meghna (GBM) delta, characterized by complex topography and hydrological conditions, is highly susceptible to recurrent flooding, particularly in its coastal regions where tidal dynamics hinder floodwater discharge. This study integrates Synthetic Aperture Radar (SAR) imagery with machine learning (ML) techniques to assess near real-time flood inundation patterns associated with extreme weather events, including recent cyclones between 2017 to 2024 (namely, Mora, Titli, Fani, Amphan, Yaas, Sitrang, Midhili, and Remal) as well as intense monsoonal rainfall during the same period, across a large spatial scale, to support disaster risk management efforts. Three machine learning algorithms, namely, random forest (RF), support vector machine (SVM), and K-nearest neighbors (KNN), were applied to flood extent data derived from SAR imagery to enhance flood detection accuracy. Among these, the SVM algorithm demonstrated the highest classification accuracy (75%) and exhibited superior robustness in delineating flood-affected areas. The analysis reveals that both cyclone intensity and rainfall magnitude significantly influence flood extent, with the western coastal zone (e.g., Morrelganj and Kaliganj) being most consistently affected. The peak inundation extent was observed during the 2023 monsoon (10,333 sq. km), while interannual variability in rainfall intensity directly influenced the spatial extent of flood-affected zones. In parallel, eight major cyclones, including Amphan (2020) and Remal (2024), triggered substantial flooding, with the most severe inundation recorded during Cyclone Remal with an area of 9243 sq. km. Morrelganj and Chakaria were consistently identified as flood hotspots during both monsoonal and cyclonic events. Comparative analysis indicates that cyclones result in larger areas with low-level inundation (19,085 sq. km) compared to monsoons (13,829 sq. km). However, monsoon events result in a larger area impacted by frequent inundation, underscoring the critical role of rainfall intensity. These findings underscore the utility of SAR-ML integration in operational flood monitoring and highlight the urgent need for localized, event-specific flood risk management strategies to enhance flood resilience in the GBM delta. Full article
Show Figures

Figure 1

Back to TopTop