Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = diabetic (poly-)neuropathy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 2689 KiB  
Review
Dental Stem Cell-Based Therapy for Glycemic Control and the Scope of Clinical Translation: A Systematic Review and Meta-Analysis
by Pallavi Tonsekar, Vidya Tonsekar, Shuying Jiang and Gang Yue
Int. J. Transl. Med. 2024, 4(1), 87-125; https://doi.org/10.3390/ijtm4010005 - 15 Jan 2024
Cited by 4 | Viewed by 2386
Abstract
Background: The tooth is a repository of stem cells, garnering interest in recent years for its therapeutic potential. The aim of this systematic review and meta-analysis was to test the hypothesis that dental stem cell administration can reduce blood glucose and ameliorate polyneuropathy [...] Read more.
Background: The tooth is a repository of stem cells, garnering interest in recent years for its therapeutic potential. The aim of this systematic review and meta-analysis was to test the hypothesis that dental stem cell administration can reduce blood glucose and ameliorate polyneuropathy in diabetes mellitus. The scope of clinical translation was also assessed. Methods: PubMed, Cochrane, Ovid, Web of Science, and Scopus databases were searched for animal studies that were published in or before July 2023. A search was conducted in OpenGrey for unpublished manuscripts. Subgroup analyses were performed to identify potential sources of heterogeneity among studies. The risk for publication bias was assessed by funnel plot, regression, and rank correlation tests. Internal validity, external validity, and translation potential were determined using the SYRCLE (Systematic Review Center for Laboratory Animal Experimentation) risk of bias tool and comparative analysis. Results: Out of 5031 initial records identified, 17 animal studies were included in the review. There was a significant decrease in blood glucose in diabetes-induced animals following DSC administration compared to that observed with saline or vehicle (SMD: −3.905; 95% CI: −5.633 to −2.177; p = 0.0004). The improvement in sensory nerve conduction velocity (SMD: 4.4952; 95% CI: 0.5959 to 8.3945; p = 0.035) and capillary-muscle ratio (SMD: 2.4027; 95% CI: 0.8923 to 3.9132; p = 0.0095) was significant. However, motor nerve conduction velocity (SMD: 3.1001; 95% CI: −1.4558 to 7.6559; p = 0.119) and intra-epidermal nerve fiber ratio (SMD: 1.8802; 95% CI: −0.4809 to 4.2413; p = 0.0915) did not increase significantly. Regression (p < 0.0001) and rank correlation (p = 0.0018) tests indicated the presence of funnel plot asymmetry. Due to disparate number of studies in subgroups, the analyses could not reliably explain the sources of heterogeneity. Interpretation: The direction of the data indicates that DSCs can provide good glycemic control in diabetic animals. However, methodological and reporting quality of preclinical studies, heterogeneity, risk of publication bias, and species differences may hamper translation to humans. Appropriate dose, mode of administration, and preparation must be ascertained for safe and effective use in humans. Longer-duration studies that reflect disease complexity and help predict treatment outcomes in clinical settings are warranted. This review is registered in PROSPERO (number CRD42023423423). Full article
Show Figures

Figure 1

12 pages, 1290 KiB  
Study Protocol
Effect of Surgical Release of Entrapped Peripheral Nerves in Sensorimotor Diabetic Neuropathy on Pain and Sensory Dysfunction—Study Protocol of a Prospective, Controlled Clinical Trial
by Simeon C. Daeschler, Anna Pennekamp, Dimitrios Tsilingiris, Catalina Bursacovschi, Martin Aman, Amr Eisa, Arne Boecker, Felix Klimitz, Annette Stolle, Stefan Kopf, Daniel Schwarz, Martin Bendszus, Ulrich Kneser, Zoltan Kender, Julia Szendroedi and Leila Harhaus
J. Pers. Med. 2023, 13(2), 348; https://doi.org/10.3390/jpm13020348 - 17 Feb 2023
Cited by 5 | Viewed by 4554
Abstract
Background: Nerve entrapment has been hypothesized to contribute to the multicausal etiology of axonopathy in sensorimotor diabetic neuropathy. Targeted surgical decompression reduces external strain on the affected nerve and, therefore, may alleviate symptoms, including pain and sensory dysfunction. However, its therapeutic value in [...] Read more.
Background: Nerve entrapment has been hypothesized to contribute to the multicausal etiology of axonopathy in sensorimotor diabetic neuropathy. Targeted surgical decompression reduces external strain on the affected nerve and, therefore, may alleviate symptoms, including pain and sensory dysfunction. However, its therapeutic value in this cohort remains unclear. Aim: Quantifying the treatment effect of targeted lower extremity nerve decompression in patients with preexisting painful sensorimotor diabetic neuropathy and nerve entrapment on pain intensity, sensory function, motor function, and neural signal conduction. Study design: This prospective, controlled trial studies 40 patients suffering from bilateral therapy-refractory, painful (n = 20, visual analogue scale, VAS ≥ 5) or painless (n = 20, VAS = 0) sensorimotor diabetic neuropathy with clinical and/or radiologic signs of focal lower extremity nerve compression who underwent unilateral surgical nerve decompression of the common peroneal and the tibial nerve. Tissue biopsies will be analyzed to explore perineural tissue remodeling in correlation with intraoperatively measured nerve compression pressure. Effect size on symptoms including pain intensity, light touch threshold, static and moving two-point discrimination, target muscle force, and nerve conduction velocity will be quantified 3, 6, and 12 months postoperatively, and compared (1) to the preoperative values and (2) to the contralateral lower extremity that continues non-operative management. Clinical significance: Targeted surgical release may alleviate mechanical strain on entrapped lower extremity nerves and thereby potentially improve pain and sensory dysfunction in a subset of patients suffering from diabetic neuropathy. This trial aims to shed light on these patients that potentially benefit from screening for lower extremity nerve entrapment, as typical symptoms of entrapment might be erroneously attributed to neuropathy only, thereby preventing adequate treatment. Full article
(This article belongs to the Section Methodology, Drug and Device Discovery)
Show Figures

Figure 1

Back to TopTop