Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (697)

Search Parameters:
Keywords = Galectin-1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 929 KiB  
Article
Galectin-3 Reflects Systemic Atherosclerosis in Patients with Coronary Artery Disease
by Horea-Laurentiu Onea, Calin Homorodean, Florin-Leontin Lazar, Mihai Octavian Negrea, Teodora Calin, Ioan Cornel Bitea, Minodora Teodoru, Vlad Ionut Nechita, Ariela Ligia Olteanu and Dan-Mircea Olinic
Medicina 2025, 61(8), 1388; https://doi.org/10.3390/medicina61081388 - 30 Jul 2025
Viewed by 178
Abstract
Background and Objectives: Galectin-3 (Gal-3), a pro-inflammatory cytokine, has been implicated in atherosclerosis and adverse cardiovascular outcomes. While its role in coronary artery disease (CAD) is increasingly recognized, its association with systemic atherosclerosis remains underexplored. Objective: To investigate serum Gal-3 levels in [...] Read more.
Background and Objectives: Galectin-3 (Gal-3), a pro-inflammatory cytokine, has been implicated in atherosclerosis and adverse cardiovascular outcomes. While its role in coronary artery disease (CAD) is increasingly recognized, its association with systemic atherosclerosis remains underexplored. Objective: To investigate serum Gal-3 levels in patients with CAD and evaluate correlations between CAD severity and extra-coronary atherosclerotic involvement (carotid, femoral, and radial territories). Materials and Methods: We prospectively enrolled 56 patients with CAD undergoing coronary angiography (42.8% with acute-ACS; 57.2% with chronic coronary syndromes-CCS). Gal-3 levels were measured within 24 h of admission. Atherosclerosis severity was assessed angiographically and through vascular ultrasound of the carotid, femoral, and radial arteries. Patients were stratified by median Gal-3 levels, and clinical follow-up was performed at 1 and 3 months. Results: Gal-3 levels were significantly higher in CAD vs. controls (20.7 vs. 10.1 ng/mL; p < 0.00001) and in ACS vs. CCS (22.18. vs. 17.93 ng/mL; p = 0.019). Gal-3 correlated positively with culprit lesion diameter stenosis (DS) (R = 0.30; p = 0.023) and maximum severity of additional treated lesions (R = 0.62; p = 0.006). Gal-3 also correlated positively with carotid plaque thickness (R = 0.32; p = 0.016), while patients with Gal-3 levels above the median showed increased median values for femoral plaque thickness (32.4 vs. 26.45 mm, p = 0.046). No correlation was found with radial artery calcification. Gal-3 showed moderate discrimination for ACS (AUC = 0.685; cut-off 20.18 ng/mL). On multivariate analysis age, DS, and ACS presentation were independent predictors of Gal-3 above 19.07 ng/mL. Conclusions: Gal-3 levels are elevated in ACS and correlate with atherosclerotic burden, particularly in coronary, carotid, and femoral territories. These findings support Gal-3 as a potential marker of lesion severity and systemic vascular involvement, highlighting its possible role in risk stratification and the monitoring of atherosclerotic disease progression. This study provides integrated insights into the impact of Gal-3 across multiple vascular beds by assessing them concurrently within the same patient cohort. Full article
(This article belongs to the Section Cardiology)
Show Figures

Graphical abstract

38 pages, 4533 KiB  
Review
A Narrative Review on the Multifaceted Roles of Galectins in Host–Pathogen Interactions During Helicobacter pylori Infection
by Bojan Stojanovic, Natasa Zdravkovic, Marko Petrovic, Ivan Jovanovic, Bojana S. Stojanovic, Milica Dimitrijevic Stojanovic, Jelena Nesic, Milan Paunovic, Ivana Milivojcevic Bevc, Nikola Mirkovic, Mladen Pavlovic, Nenad Zornic, Bojan Milosevic, Danijela Tasic-Uros, Jelena Zivic, Goran Colakovic and Aleksandar Cvetkovic
Int. J. Mol. Sci. 2025, 26(15), 7216; https://doi.org/10.3390/ijms26157216 - 25 Jul 2025
Viewed by 176
Abstract
Helicobacter pylori infection represents one of the most prevalent and persistent bacterial infections worldwide, closely linked to a spectrum of gastroduodenal diseases, including chronic gastritis, peptic ulceration, and gastric cancer. Recent advances have shed light on the critical role of endogenous lectins, particularly [...] Read more.
Helicobacter pylori infection represents one of the most prevalent and persistent bacterial infections worldwide, closely linked to a spectrum of gastroduodenal diseases, including chronic gastritis, peptic ulceration, and gastric cancer. Recent advances have shed light on the critical role of endogenous lectins, particularly galectins, in modulating host–pathogen interactions within the gastric mucosa. Galectins are β-galactoside-binding proteins with highly conserved structures but diverse biological functions, ranging from regulation of innate and adaptive immunity to modulation of cell signaling, apoptosis, and epithelial integrity. This review provides a comprehensive synthesis of current knowledge on the involvement of key galectin family members—especially Galectin-1, -2, -3, -8, and -9—in the context of H. pylori infection. Their dual roles in enhancing mucosal defense and facilitating bacterial persistence are examined along with their contributions to immune evasion, inflammation, and gastric carcinogenesis. Understanding the interplay between galectins and H. pylori enhances our knowledge of mucosal immunity. This interaction may also reveal potential biomarkers for disease progression and identify novel therapeutic targets. Modulating galectin-mediated pathways could improve outcomes in H. pylori-associated diseases. Full article
(This article belongs to the Special Issue New Insights into Lectins)
Show Figures

Figure 1

14 pages, 308 KiB  
Article
High Levels of Galectin-3 and Uric Acid Are Independent Predictors of Renal Impairment in Patients with Stable Coronary Artery Disease
by Nayleth Leal-Pérez, Luis M. Blanco-Colio, José Luis Martín-Ventura, Carlos Gutiérrez-Landaluce, Ignacio Mahíllo-Fernández, María Luisa González-Casaus, Óscar Lorenzo, Jesús Egido and José Tuñón
J. Clin. Med. 2025, 14(15), 5264; https://doi.org/10.3390/jcm14155264 - 25 Jul 2025
Viewed by 260
Abstract
Background: High plasma levels of Galectin-3 (Gal-3) and uric acid (UA) are associated with a decline in renal function in different populations. However, this association has not yet been studied in patients with coronary artery disease (CAD). Methods: We included 556 patients with [...] Read more.
Background: High plasma levels of Galectin-3 (Gal-3) and uric acid (UA) are associated with a decline in renal function in different populations. However, this association has not yet been studied in patients with coronary artery disease (CAD). Methods: We included 556 patients with stable CAD. Plasma levels of Gal-3, UA, N-Terminal probrain natriuretic peptide (NT-proBNP), calcidiol, fibroblast growth factor 23, phosphate, parathormone, and klotho were assessed at baseline. The primary outcome was the percentage decrease in eGFR; the secondary outcomes were the absolute decrease in eGFR and achieving a reduction of ≥20% in this parameter. Results: Age was 63.1 ± 12.2 years, and 73.9% of patients were male. The median eGFR was 86.77 (72.27, 97.85) mL/min/1.73 m2. After 3.47 (2.10–5.72) years of follow-up, eGFR declined by 3.62% [−2.07–13.82]. Baseline UA (0.012 [CI95% 0.003, 0.020]; p = 0.008), Gal-3 (0.0153 [CI95% 0.001, 0.029]; p = 0.037), and NT-proBNP (0.017 [CI95% 0.000–0.025]; p = 0.027) were independent positive predictors of the percentage decrease in eGFR, while calcidiol (−0.005 [CI95% −0.009, −0.002]; p = 0.005) was an inverse predictor of this outcome. Similarly, UA and Gal-3 were positive independent predictors of the absolute decline in eGFR (0.009 [0.003, 0.017]; p = 0.004 and 0.012 [0.001, 0.023]; p = 0.031, respectively), while calcidiol was inversely associated (−0.003 [−0.005]–[−0.001]; p = 0.020). Uric acid (1.237 [1.046–1.463]; p = 0.013) and NT-proBNP (1.000 [1.000–1.001]; p = 0.049) levels were positive independent predictors of a ≥20% decrease in eGFR. In patients with eGFR ≥ 60 mL/min/1.73 m2, UA was the only biomarker independently associated with renal function decline. Conclusions: In patients with CAD and normal or mildly reduced renal function, UA and Gal-3 plasma levels are independent positive predictors of a future decrease in eGFR. These findings could lead to a change in the approach to patients with CAD in the future. Full article
14 pages, 958 KiB  
Article
Serum sICAM-1 and Galectin-3 Levels in Diabetic Patients with COVID-19
by Busra Karahan, Dogan Nasir Binici, Omer Karasahin, Sibel İba Yilmaz, Ahmet Kiziltunc and Filiz Mercantepe
Viruses 2025, 17(7), 1005; https://doi.org/10.3390/v17071005 - 17 Jul 2025
Viewed by 345
Abstract
Introduction: This study aimed to evaluate the diagnostic and prognostic value of soluble intercellular adhesion molecule-1 (sICAM-1) and galectin-3 in patients with type 2 diabetes mellitus (T2D) diagnosed with coronavirus disease 2019 (COVID-19). Participants and Method: This prospective observational study included 45 adult [...] Read more.
Introduction: This study aimed to evaluate the diagnostic and prognostic value of soluble intercellular adhesion molecule-1 (sICAM-1) and galectin-3 in patients with type 2 diabetes mellitus (T2D) diagnosed with coronavirus disease 2019 (COVID-19). Participants and Method: This prospective observational study included 45 adult patients (≥18 years) with T2D and confirmed COVID-19 who were followed in the Infectious Diseases and Clinical Microbiology departments between May and June 2022. The control group consisted of 45 healthy volunteers without chronic illness who were presented to the internal medicine outpatient clinic. In addition to routine laboratory biomarkers assessed at hospital admission, the serum levels of sICAM-1 and galectin-3 were measured via ELISA kits. Results: The median age of the patients was 66 years (range: 41–77), and 23 (51.1%) were male. Hypertension was the most common comorbidity in addition to diabetes. Compared with those in the control group, the serum levels of both galectin-3 and sICAM-1 were significantly elevated in patients with COVID-19 and T2D (p < 0.001). However, there was no significant difference in galectin-3 or sICAM-1 levels between survivors and nonsurvivors (p = 0.240 and p = 0.266, respectively). Conclusion: Galectin-3 and sICAM-1 demonstrated stronger diagnostic utility than conventional biomarkers in T2D patients with COVID-19. The elevated levels of these markers may reflect the underlying systemic inflammation observed in diabetic patients with COVID-19. The strong correlation between galectin-3 and sICAM-1 suggests a potential link in their inflammatory regulation, although causality cannot be inferred. Full article
(This article belongs to the Special Issue COVID-19 Complications and Co-infections)
Show Figures

Graphical abstract

13 pages, 3226 KiB  
Article
Nematocidal Activity and Intestinal Receptor-Binding Affinity of Endogenous Lectins in Bursaphelenchus xylophilus (Pinewood Nematode)
by Songqing Wu, Yunzhu Sun, Zibo Li, Xinquan Li, Wei Yu and Yajie Guo
Forests 2025, 16(7), 1177; https://doi.org/10.3390/f16071177 - 16 Jul 2025
Viewed by 295
Abstract
Pine wilt disease, a devastating disease severely impacting pine ecosystems, is caused by the pinewood nematode Bursaphelenchus xylophilus (Steiner & Bührer, 1934) Nickle, 1970 (Nematoda: Parasitaphelenchidae). Controlling B. xylophilus is crucial for preventing and managing pine wilt disease. Recently discovered novel nematocidal lectins [...] Read more.
Pine wilt disease, a devastating disease severely impacting pine ecosystems, is caused by the pinewood nematode Bursaphelenchus xylophilus (Steiner & Bührer, 1934) Nickle, 1970 (Nematoda: Parasitaphelenchidae). Controlling B. xylophilus is crucial for preventing and managing pine wilt disease. Recently discovered novel nematocidal lectins could provide more advantageous materials for utilizing genetically engineered bacteria to control this pathogen. Therefore, this study focuses on identifying novel nematocidal toxins within B. xylophilus lectins. Overall, we obtained twenty-one galectin, one L-type lectin (LTL), and three chitin-binding domain (CBD) genes by screening the B. xylophilus genome database; these genes were successfully expressed proteins. The bioassay results indicated that Bxgalectin2, Bxgalectin3, Bxgalectin4, Bxgalectin9, and BxLTL1 induced mortality rates exceeding 50% in B. xylophilus. Notably, Bxgalectin4 showed the strongest nematocidal activity, causing 88% mortality in the treated nematode population. The enzyme-linked immunosorbent assays further demonstrated that Bxgalectin3 (Kd = 8.992 nM) and Bxgalectin4 (Kd = 9.634 nM) had a higher binding affinity to GPI-anchored proteins from B. xylophilus. Additionally, Bxgalectin2 (Kd = 16.50 nM), Bxgalectin9 (Kd = 16.48 nM), and BxLTL1 (Kd = 24.34 nM) can bind to the GPI-anchored protein. This study reports, for the first time, that lectins endogenous to B. xylophilus exhibit nematocidal activity against their own species. These findings open up the possibility of using nematode lectins as potent control agents in the biological control of B. xylophilus. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

21 pages, 3177 KiB  
Review
Galectin-3: Integrator of Signaling via Hexosamine Flux
by Mana Mohan Mukherjee, Devin Biesbrock and John Allan Hanover
Biomolecules 2025, 15(7), 1028; https://doi.org/10.3390/biom15071028 - 16 Jul 2025
Viewed by 273
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate [...] Read more.
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate surface receptor signaling and internalization. However, the tissue-specific regulation of Gal-3 surface expression remains poorly understood. Here, we review evidence for the involvement of Gal-3 in cell surface signaling, intranuclear events, and intracellular trafficking. Our focus will be on the O-GlcNAc modification as a regulator of Gal-3 biosynthesis, non-canonical secretion, and recycling. We argue that the nutrient-driven cytoplasmic hexosamine biosynthetic pathway (HBP) and endomembrane transport mechanisms generate unique pools of nucleotide sugars. The differing levels of nucleotide sugars in the cytosol, endoplasmic reticulum (ER), and Golgi apparatus generate differential thresholds for the responsiveness of O-GlcNAc cycling, N- and O-linked glycan synthesis/branching, and glycolipid synthesis. By regulating Gal-3 synthesis and non-canonical secretion, O-GlcNAc cycling may serve as a nexus constraining Gal-3 cell surface expression and lattice formation. This homeostatic feedback mechanism would be critical under conditions where extensive glycan synthesis and branching in the endomembrane system and on the cell surface are maintained by elevated hexosamine synthesis. Thus, O-GlcNAc cycling and Gal-3 synergize to regulate Gal-3 secretion and influence cellular signaling. In humans, Gal-3 serves as an early-stage prognostic indicator for heart disease, kidney disease, viral infection, autoimmune disease, and neurodegenerative disorders. Since O-GlcNAc cycling has also been linked to these pathologic states, exploring the interconnections between O-GlcNAc cycling and Gal-3 expression and synthesis is likely to emerge as an exciting area of research. Full article
(This article belongs to the Special Issue Cell Biology and Biomedical Application of Galectins)
Show Figures

Figure 1

37 pages, 3510 KiB  
Review
Galectins as Master Regulators of Gastric Cancer Progression
by Bojan Stojanovic, Ivan Jovanovic, Milica Dimitrijevic Stojanovic, Bojan Milosevic, Marko Spasic, Bojana S. Stojanovic, Stefan Jakovljevic, Nenad Zornic, Danijela Jovanovic, Jelena Nesic, Milan Paunovic, Ivan Radosavljevic, Nenad Markovic, Mladen Pavlovic and Nikola Mirkovic
Cells 2025, 14(14), 1090; https://doi.org/10.3390/cells14141090 - 16 Jul 2025
Viewed by 391
Abstract
Gastric cancer remains a major global health challenge, largely due to its biological heterogeneity and limited treatment options for advanced stages. Among the numerous molecular players involved in its pathogenesis, galectins—β-galactoside-binding lectins—have emerged as key modulators of tumor behavior. These multifunctional proteins influence [...] Read more.
Gastric cancer remains a major global health challenge, largely due to its biological heterogeneity and limited treatment options for advanced stages. Among the numerous molecular players involved in its pathogenesis, galectins—β-galactoside-binding lectins—have emerged as key modulators of tumor behavior. These multifunctional proteins influence diverse processes including cell proliferation, invasion, immune evasion, stromal remodeling, and therapy resistance. Recent advances in experimental and clinical research have shed light on the complex roles of galectin family members—particularly Galectin-1, -3, and -9—in shaping the tumor microenvironment and driving disease progression. This review highlights the current understanding of galectin biology in gastric cancer, with emphasis on their structural characteristics, cellular localization, functional diversity, and translational relevance. By synthesizing insights from molecular studies and clinicopathological observations, we explore the potential of galectins as biomarkers and therapeutic targets in the evolving landscape of gastric cancer research. Full article
Show Figures

Figure 1

13 pages, 6330 KiB  
Article
Erythroblasts Promote the Development of a Suppressive Lymphocyte Phenotype via Treg Induction and PD1 Upregulation on the Surfaces of B-Cells: A Study on the Subpopulation-Specific Features of Erythroblasts
by Kirill Nazarov, Roman Perik-Zavodskii, Julia Shevchenko and Sergey Sennikov
Curr. Issues Mol. Biol. 2025, 47(7), 550; https://doi.org/10.3390/cimb47070550 - 15 Jul 2025
Viewed by 236
Abstract
This study identifies the novel effects of soluble factors derived from murine erythroblasts on lymphoid cell phenotypes. These effects were observed following the treatment of splenic mononuclear cells with erythroblast-conditioned media received from both healthy mice and mice subjected to hematopoiesis-activating conditions (hypoxia, [...] Read more.
This study identifies the novel effects of soluble factors derived from murine erythroblasts on lymphoid cell phenotypes. These effects were observed following the treatment of splenic mononuclear cells with erythroblast-conditioned media received from both healthy mice and mice subjected to hematopoiesis-activating conditions (hypoxia, blood loss, and hemolytic anemia), suggesting a common mechanism of action. Using flow cytometry, we elucidated that erythroblast-derived soluble products modulate T cell differentiation by promoting Treg development and increasing PD-1 surface expression on B cells. The immunoregulatory potential of erythroblasts is subpopulation-dependent: CD45+ erythroblasts respond to hemolytic stress by upregulating the surface expression of immunosuppressive molecules PDL1 and Galectin-9, while CD45- erythroblasts primarily increase TGFb production. These findings highlight the regulatory role of erythroblasts in modulating immune responses. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

26 pages, 1016 KiB  
Article
TIM-3/Galectin-9 Immune Axis in Colorectal Cancer in Relation to KRAS, NRAS, BRAF, PIK3CA, AKT1 Mutations, MSI Status, and the Cytokine Milieu
by Błażej Ochman, Anna Kot, Sylwia Mielcarska, Agnieszka Kula, Miriam Dawidowicz, Dorota Hudy, Monika Szrot, Jerzy Piecuch, Dariusz Waniczek, Zenon Czuba and Elżbieta Świętochowska
Int. J. Mol. Sci. 2025, 26(14), 6735; https://doi.org/10.3390/ijms26146735 - 14 Jul 2025
Viewed by 245
Abstract
In this study, we investigated the expression of TIM-3 and Galectin-9 (Gal-9) in colorectal cancer (CRC) and their associations with oncogenic mutations, MSI status, cytokine profiles, and transcriptional data. TIM-3 and Gal-9 protein levels were significantly increased in CRC tissues compared to matched [...] Read more.
In this study, we investigated the expression of TIM-3 and Galectin-9 (Gal-9) in colorectal cancer (CRC) and their associations with oncogenic mutations, MSI status, cytokine profiles, and transcriptional data. TIM-3 and Gal-9 protein levels were significantly increased in CRC tissues compared to matched non-tumor margins (p < 0.05 and p < 0.001, respectively). TIM-3 protein concentration was notably higher in PIK3CA-mutated tumors (p < 0.05), while no associations were found with KRAS, NRAS, BRAF, AKT1, or MSI status. Multiplex cytokine profiling revealed strong correlations between TIM-3 and Gal-9 levels and key immunomodulatory pathways, including IL-10, IL-17, and chemokine signaling. We also observed significant associations with cytokine subsets involved in protumor activity and immune regulation. Gene set enrichment analysis (GSEA) demonstrated that high TIM-3 and Gal-9 expression was associated with upregulation of cell cycle-related pathways, and downregulation of immune signatures, such as interferon responses and TNF-α/NFκB signaling. These findings suggest that increased TIM-3 and Gal-9 expression reflects a shift toward proliferative activity and immune suppression in the CRC tumor microenvironment, highlighting their potential as biomarkers of immunoevasive tumor phenotypes, especially in PIK3CA-mutant CRC tumors. Full article
Show Figures

Figure 1

14 pages, 859 KiB  
Review
Divergent Cardiac Adaptations in Endurance Sport: Atrial Fibrillation Markers in Marathon Versus Ultramarathon Athletes
by Zbigniew Waśkiewicz, Eduard Bezuglov, Oleg Talibov, Robert Gajda, Zhassyn Mukhambetov, Daulet Azerbaev and Sergei Bondarev
J. Cardiovasc. Dev. Dis. 2025, 12(7), 260; https://doi.org/10.3390/jcdd12070260 - 7 Jul 2025
Viewed by 490
Abstract
Endurance training induces significant cardiac remodeling, with evidence suggesting that prolonged high-intensity exercise may increase the risk of atrial fibrillation (AF). However, physiological responses differ by event type. This review compares AF-related markers in marathon and ultramarathon runners, focusing on structural adaptations, inflammatory [...] Read more.
Endurance training induces significant cardiac remodeling, with evidence suggesting that prolonged high-intensity exercise may increase the risk of atrial fibrillation (AF). However, physiological responses differ by event type. This review compares AF-related markers in marathon and ultramarathon runners, focusing on structural adaptations, inflammatory and endothelial biomarkers, and the incidence of arrhythmias. A systematic analysis of 29 studies revealed consistent left atrial (LA) enlargement in marathon runners linked to elevated AF risk and fibrosis markers such as Galectin-3 and PIIINP. In contrast, ultramarathon runners exhibited right atrial (RA) dilation and increased systemic inflammation, as indicated by elevated high-sensitivity C-reactive protein (hs-CRP) and soluble E-selectin levels. AF incidence in marathoners ranged from 0.43 per 100 person-years to 4.4%, while direct AF incidence data remain unavailable for ultramarathon populations, highlighting a critical evidence gap. These findings suggest distinct remodeling patterns and pathophysiological profiles between endurance disciplines, with implications for athlete screening and cardiovascular risk stratification. Full article
Show Figures

Figure 1

19 pages, 2916 KiB  
Review
Inflammaging-Driven Osteoporosis: Is a Galectin-Targeted Approach Needed?
by Marina Russo, Caterina Claudia Lepre, Annalisa Itro, Gabriele Martin, Gianluca Conza, Maria Consiglia Trotta, Monica Puticiu, Anca Hermenean, Francesca Gimigliano, Michele D’Amico and Giuseppe Toro
Int. J. Mol. Sci. 2025, 26(13), 6473; https://doi.org/10.3390/ijms26136473 - 4 Jul 2025
Viewed by 379
Abstract
Osteoporosis (OP) is a chronic disease characterized by reduced bone mass and altered microarchitecture, leading to bone fragility and fractures. Due to its high morbidity, disability, and healthcare costs, identifying new biomarkers and therapeutic strategies is crucial for improving OP diagnosis and prevention. [...] Read more.
Osteoporosis (OP) is a chronic disease characterized by reduced bone mass and altered microarchitecture, leading to bone fragility and fractures. Due to its high morbidity, disability, and healthcare costs, identifying new biomarkers and therapeutic strategies is crucial for improving OP diagnosis and prevention. In this context, this narrative review aims to depict the role of carbohydrate-binding proteins Galectins (Gals) in the combined processes of inflammation and aging contributing to bone fragility by exploring their potential as novel therapeutic targets for OP. Full article
(This article belongs to the Special Issue Galectins (Gals), 2nd Edition)
Show Figures

Figure 1

14 pages, 539 KiB  
Article
Association of Epicardial Adipose Tissue with Novel Inflammation and Heart Failure Biomarkers in Type 2 Diabetes Patients: Effect of Metabolic Control
by Pedro Gil-Millan, José Rives, David Viladés, Álvaro García-Osuna, Idoia Genua, Inka Miñambres, Margarita Grau-Agramunt, Ignasi Gich, Mercedes Camacho, Sonia Benitez, Josep Julve, José Luis Sánchez-Quesada and Antonio Pérez
J. Clin. Med. 2025, 14(13), 4687; https://doi.org/10.3390/jcm14134687 - 2 Jul 2025
Viewed by 462
Abstract
Background: Type 2 diabetes (T2D patients) have a 74% increased risk of heart failure (HF), but traditional HF biomarkers lack sensitivity in early disease detection. Increased epicardial adipose tissue volume (EATv) is associated with cardiovascular risk in T2D, and novel biomarkers such [...] Read more.
Background: Type 2 diabetes (T2D patients) have a 74% increased risk of heart failure (HF), but traditional HF biomarkers lack sensitivity in early disease detection. Increased epicardial adipose tissue volume (EATv) is associated with cardiovascular risk in T2D, and novel biomarkers such as growth differentiation factor 15 (GDF15), Galectin-3, and soluble suppression of tumorigenicity 2 (sST2) are inflammation biomarkers linked to HF. Methods: We investigated associations between EATv, inflammation biomarkers, and the effect of metabolic control in 14 healthy controls (HCs) and 36 newly diagnosed T2D patients both before (poor glycemic control, PGC) and after 12 months of glycemic optimization (good glycemic control, GGC). EATv indexed to body surface area (iEATv) was quantified by multidetector computed tomography, and biomarker levels were measured by immunoassays. Results: PGC patients had higher iEATv (59.53 ± 21.67 vs. 36.84 ± 16.57 cm3/m2, p = 0.0017) and elevated GDF15, Galectin-3, and sST2 levels (all p < 0.05) than HC subjects. The glycemic optimization reduced iEATv (p = 0.0232) and sST2 (p = 0.048), while GDF15 and Galectin-3 remained unchanged. Multivariable analysis confirmed independent associations between iEATv, GDF15 (β = 0.27, p = 0.027) and sST2 (β = 0.29, p = 0.02). Conclusions: These results support the link between systemic inflammation, EAT expansion, and cardiac dysfunction, and they point to the role of epicardial fat in early HF risk of T2D patients. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Graphical abstract

25 pages, 1575 KiB  
Review
Galectin-3—Insights from Inflammatory Bowel Disease and Primary Sclerosing Cholangitis
by Thomas Grewal, Hauke Christian Tews and Christa Buechler
Int. J. Mol. Sci. 2025, 26(13), 6101; https://doi.org/10.3390/ijms26136101 - 25 Jun 2025
Viewed by 602
Abstract
Inflammatory bowel disease (IBD) and primary sclerosing cholangitis (PSC) are related diseases with poorly understood pathophysiology. While therapy options for IBD have increased, treatment options for PSC remain limited. Galectin-3 is a multifunctional lectin expressed in intestinal epithelial cells, and is abundant in [...] Read more.
Inflammatory bowel disease (IBD) and primary sclerosing cholangitis (PSC) are related diseases with poorly understood pathophysiology. While therapy options for IBD have increased, treatment options for PSC remain limited. Galectin-3 is a multifunctional lectin expressed in intestinal epithelial cells, and is abundant in immune cells such as macrophages, with roles in cell adhesion, apoptosis, inflammation and fibrosis being associated with IBD and PSC disease development and progression. In addition, galectin-3 is also a visceral fat-derived protein whose systemic levels are increased in obese individuals, the latter correlating with a poorer prognosis in IBD and PSC patients. On the other hand, decreased galectin-3 expression in the inflamed mucosal tissues of mice and patients with IBD possibly indicate a protective role of this lectin in IBD. However, galectin-3 loss or inhibition is protective in most animal models of liver fibrosis but exacerbates the severity of autoimmune liver disease. Hence, with PSC being a slowly progressing autoimmune hepatobiliary disease closely related to IBD, further studies evaluating galectin-3 as a therapeutic target or biomarker for the severity of IBD and the occurrence of PSC are still needed. This review summarizes studies that have analyzed expression patterns and functions of galectin-3 in IBD and PSC. Current evidence suggests that strategies to block galectin-3 are not advised for patients with IBD and PSC-IBD. Full article
(This article belongs to the Special Issue Galectins (Gals), 2nd Edition)
Show Figures

Figure 1

59 pages, 12945 KiB  
Review
The Role of Glycans in Human Immunity—A Sweet Code
by Igor Tvaroška
Molecules 2025, 30(13), 2678; https://doi.org/10.3390/molecules30132678 - 20 Jun 2025
Viewed by 1071
Abstract
Glycans on the surface of all immune cells are the product of diverse post-translational modifications (glycosylation) that affect almost all proteins and possess enormous structural heterogeneity. Their bioinformational content is decoded by glycan-binding proteins (lectins, GBPs), such as C-type lectins, including selectins, galectins, [...] Read more.
Glycans on the surface of all immune cells are the product of diverse post-translational modifications (glycosylation) that affect almost all proteins and possess enormous structural heterogeneity. Their bioinformational content is decoded by glycan-binding proteins (lectins, GBPs), such as C-type lectins, including selectins, galectins, and Siglecs. Glycans located on the surface of immune cells are involved in many immunological processes through interactions with GBPs. Lectins recognize changes in the glycan epitopes; distinguish among host (self), microbial (non-self), and tumor (modified self) antigens; and consequently regulate immune responses. Understanding GBP–glycan interactions accelerates the development of glycan-targeted therapeutics in severe diseases, including inflammatory and autoimmune diseases and cancer. This review will discuss N- and O-glycosylations and glycosyltransferases involved in the biosynthesis of carbohydrate epitopes and address how interactions between glycan epitopes and GBPs are crucial in immune responses. The pivotal role of the glycan antigen tetrasaccharide sialyl Lewis x in mediating immune and tumor cell trafficking into the extravascular site will be discussed. Next, the role of glycans in modulating bacterial, fungal, viral, and parasitic infections and cancer will be surveyed. Finally, the role of glycosylation in antibodies and carbohydrate vaccines will be analyzed. Full article
(This article belongs to the Collection Advances in Glycosciences)
Show Figures

Figure 1

17 pages, 2320 KiB  
Article
Ultrasound as a New Method for the Release and Identification of Novel microRNAs and Proteins as Candidate Biomarkers in Pancreatic Cancer
by Veronica Zelli, Alessandra Corrente, Chiara Compagnoni, Francesco Colaianni, Martina Sara Miscione, Monica Di Padova, Daria Capece, Gaetano Barbato, Edoardo Alesse, Francesca Zazzeroni and Alessandra Tessitore
Cancers 2025, 17(12), 1979; https://doi.org/10.3390/cancers17121979 - 13 Jun 2025
Viewed by 575
Abstract
Background/Objectives: Pancreatic cancer (PC) is among the most aggressive malignancies, often diagnosed at late stages. MicroRNAs (miRNAs) and proteins released from the tumor microenvironment into body fluids represent promising non-invasive biomarkers for early cancer detection. In this study, we took advantage of an [...] Read more.
Background/Objectives: Pancreatic cancer (PC) is among the most aggressive malignancies, often diagnosed at late stages. MicroRNAs (miRNAs) and proteins released from the tumor microenvironment into body fluids represent promising non-invasive biomarkers for early cancer detection. In this study, we took advantage of an innovative ultrasound (US)-based instrument (SonoWell®, Inno-Sol srl, Rome, Italy) to treat PC cells in order to promote and amplify the release of molecules, with the aim of identifying novel putative diagnostic PC biomarkers. Methods: Three human pancreatic adenocarcinoma cell lines (T3M-4, Panc02.03, and PaCa-44) and a non-cancerous pancreatic epithelial line (HPanEPic) were subjected to US using the SonoWell instrument. MiRNAs released in the supernatants were profiled by TaqMan-based qRT-PCR microfluidic cards, while proteins were analyzed by antibody arrays. Publicly available datasets of circulating miRNAs in PC patients were also reviewed. Results: Expression levels of 22 miRNAs in T3M-4 cells, 11 in Panc02.03, and 22 in PaCa-44, none of which were identified in the non-cancerous cell line profiling, were increased in the supernatant of US-treated as opposed to control cells. Among the statistically significant miRNAs or miRNAs common to at least two tumor cell lines, the expression levels of miR-155-5p, miR-320a, miR-32-5p, and miR-93-5p were also found to be significantly upregulated in sera from PC patients compared to the results for healthy controls. With regard to proteins released after sonication, several molecules were identified as candidate biomarkers in cancer US supernatants (Beta-2 microglobulin, CA125, CA19-9, CEA, CRP, Galectin-3, TIMP-1, uPA, and VEGF-A). Conclusions: We demonstrated that US-mediated sonoporation can promote and amplify the release of small molecules, miRNAs, and proteins into cell culture supernatants for consideration as putative biomarkers, thus encouraging further studies aimed at directly validating their expression levels in sera/plasma from PC patients and at deepening their role in the treatment of PC. Full article
(This article belongs to the Special Issue Management of Pancreatic Cancer)
Show Figures

Graphical abstract

Back to TopTop