Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Authors = Zhicai Li

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 10104 KB  
Article
Enhancement of Dendrobine Production by CRISPR/Act3.0-Mediated Transcriptional Activation of Multiple Endogenous Genes in Dendrobium Plants
by Meili Zhao, Zhenyu Yang, Jian Li, Feng Ming, Demin Kong, Haifeng Xu, Yu Wang, Peng Chen, Xiaojuan Duan, Meina Wang and Zhicai Wang
Int. J. Mol. Sci. 2025, 26(4), 1487; https://doi.org/10.3390/ijms26041487 - 11 Feb 2025
Cited by 1 | Viewed by 1489
Abstract
Dendrobine, a significant medicinal compound, typically accumulates at low concentrations within several Dendrobium species, including Dendrobium nobile, Dendrobium catenatum, and Dendrobium moniliforme. As D. nobile and D. catenatum are established ingredients in traditional Chinese medicine and have been cultivated extensively, [...] Read more.
Dendrobine, a significant medicinal compound, typically accumulates at low concentrations within several Dendrobium species, including Dendrobium nobile, Dendrobium catenatum, and Dendrobium moniliforme. As D. nobile and D. catenatum are established ingredients in traditional Chinese medicine and have been cultivated extensively, they present ideal plant chassis for upscaling dendrobine production for industrial and research applications. This study employed two approaches: the ectopic overexpression of seven genes through multigene stacking and the activation of multiple key endogenous genes in the dendrobine synthesis pathway using CRISPR/Act3.0 in either D. nobile or D. catenatum. These methods enhanced dendrobine production in transiently infiltrated leaves by 30.1% and transgenic plants by 35.6%. The study is the first to apply CRISPR/Act3.0 to Dendrobium orchids, enhancing dendrobine production, and thus laying a solid foundation for further improvements. CRISPR/Act3.0 is a recently developed technique that demonstrates high efficiency in model plant species, including rice, maize, and Arabidopsis. By combining CRISPR with transcriptional regulatory modules, activation of multiple endogenous genes in the metabolic pathway can be achieved. The successful application in orchid molecular breeding reveals promising potential for further exploration. Full article
Show Figures

Figure 1

17 pages, 9263 KB  
Article
Short-Term Photovoltaic Power Forecasting Based on the VMD-IDBO-DHKELM Model
by Shengli Wang, Xiaolong Guo, Tianle Sun, Lihui Xu, Jinfeng Zhu, Zhicai Li and Jinjiang Zhang
Energies 2025, 18(2), 403; https://doi.org/10.3390/en18020403 - 17 Jan 2025
Viewed by 1125
Abstract
A short-term photovoltaic power forecasting method is proposed, integrating variational mode decomposition (VMD), an improved dung beetle algorithm (IDBO), and a deep hybrid kernel extreme learning machine (DHKELM). First, the weather factors less relevant to photovoltaic (PV) power generation are filtered using the [...] Read more.
A short-term photovoltaic power forecasting method is proposed, integrating variational mode decomposition (VMD), an improved dung beetle algorithm (IDBO), and a deep hybrid kernel extreme learning machine (DHKELM). First, the weather factors less relevant to photovoltaic (PV) power generation are filtered using the Spearman correlation coefficient. Historical data are then clustered into three categories—sunny, cloudy, and rainy days—using the K-means algorithm. Next, the original PV power data are decomposed through VMD. A DHKELM-based combined prediction model is developed for each component of the decomposition, tailored to different weather types. The model’s hyperparameters are optimized using the IDBO. The final power forecast is determined by combining the outcomes of each individual component. Validation is performed using actual data from a PV power plant in Australia and a PV power station in Kashgar, China demonstrates. Numerical evaluation results show that the proposed method improves the Mean Absolute Error (MAE) by 3.84% and the Root-Mean-Squared Error (RMSE) by 3.38%, confirming its accuracy. Full article
(This article belongs to the Special Issue Advanced Forecasting Methods for Sustainable Power Grid)
Show Figures

Figure 1

17 pages, 3142 KB  
Article
Co-Existing Nanoplastics Further Exacerbates the Effects of Triclosan on the Physiological Functions of Human Serum Albumin
by Yan Bao, Yaoyao Wang, Hongbin Liu, Jing Lan, Zhicai Li, Wansong Zong and Zongshan Zhao
Life 2025, 15(1), 112; https://doi.org/10.3390/life15010112 - 16 Jan 2025
Cited by 3 | Viewed by 1368
Abstract
The potential health risks posed by the coexistence of nanoplastics (NPs) and triclosan (TCS) have garnered significant attention. However, the effects and underlying mechanisms of NPs and TCS on key functional proteins at the molecular level remain poorly understood. This study reports the [...] Read more.
The potential health risks posed by the coexistence of nanoplastics (NPs) and triclosan (TCS) have garnered significant attention. However, the effects and underlying mechanisms of NPs and TCS on key functional proteins at the molecular level remain poorly understood. This study reports the effect of polystyrene nanoplastics (PSNPs) on the binding of TCS to human serum albumin (HSA) using multispectral methods and molecular simulation systems. The experimental results show that TCS significantly inhibits HSA esterase activity, with exacerbating inhibition in the presence of PSNPs, which is attributed to the alteration of HSA conformation and microenvironment of the amino acid residues induced by PSNPs. Molecular docking and site marker competitive studies indicate that TCS predominantly binds to site I of subdomain Sudlow II and the presence of PSNPs does not affect the binding sites. Spectra analyses indicate that the quenching mechanism between TCS and HSA belongs to the static quenching type and the presence of PSNPs does not change the fluorescence quenching type. The HSA fluorescence quenching and the conformational alterations induced by TCS are further enhanced in the presence of PSNPs, indicating that PSNPs enhance the binding of TCS to HSA by making TCS more accessible to the binding sites. This study provides valuable information about the toxicity of PSNPs and TCS in case of co-exposure. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

24 pages, 19392 KB  
Article
Platinum Compound on Gold–Magnesia Hybrid Structure: A Theoretical Investigation on Adsorption, Hydrolysis, and Interaction with DNA Purine Bases
by Zhenjun Song, Mingyue Liu, Aiguo Zhong, Meiding Yang, Zhicai He, Wenmin Wang and Hongdao Li
Nanomaterials 2024, 14(24), 2027; https://doi.org/10.3390/nano14242027 - 17 Dec 2024
Cited by 1 | Viewed by 1141
Abstract
Cisplatin-based platinum compounds are important clinical chemotherapeutic agents that participate in most tumor chemotherapy regimens. Through density-functional theory calculations, the formation and stability of the inorganic oxide carrier, the mechanisms of the hydrolysis reaction of the activated platinum compound, and its binding mechanism [...] Read more.
Cisplatin-based platinum compounds are important clinical chemotherapeutic agents that participate in most tumor chemotherapy regimens. Through density-functional theory calculations, the formation and stability of the inorganic oxide carrier, the mechanisms of the hydrolysis reaction of the activated platinum compound, and its binding mechanism with DNA bases can be studied. The higher the oxidation state of Pt (II to IV), the more electrons transfer from the magnesia–gold composite material to the platinum compound. After adsorption on the composite carrier, 5d←2p coordination bonds of Pt-N are strengthened. For flat and oblique adsorption modes of cisplatin, there is no significant difference in the density of states of the gold and magnesium oxide film, indicating the maintenance of the heterojunction structural framework. However, there are significant changes in the electronic states of cisplatin itself with different adsorption configurations. In the flat configuration, the band gap width of cisplatin is larger than that of the oblique configuration. The Cl-Pt bond range in the Pt(III) compound shows a clear charge reduction on the magnesia film, indicating the Cl-Pt bond is an active site with the potential for decomposition and hydrolysis. The substitution of chloride ions by water can lead to hydrolysis products, enhancing the polarization of the composite and showing strong charge separation. The hydrolysis of the free platinum compound is endothermic by 0.309 eV, exceeding the small activation energy barrier of 0.399 eV, indicating that hydrolysis of this platinum compound is easily achievable. ADME (absorption, distribution, metabolism, and excretion) prediction parameters indicate that hydrolysis products have good ESOL (Estimated SOLubility) solubility and high gastrointestinal absorption, consistent with Lipinski’s rule. During the coordination reaction process, there are significant changes in the distribution of frontier molecular orbitals, with the HOMO (highest occupied molecular orbital) of the initial state primarily located on the purine base, providing the possibility for electron transfer to the empty orbitals of the platinum compound in the LUMO (lowest unoccupied molecular orbital). The HOMO and HOMO-1 of the transition state and product are mainly distributed on the platinum compound, indicating clear electron transfer and orbital rearrangement. The activation energy barrier for the purine coordination reaction with the hydrolysis products is reduced to 0.61 eV, and the dipole moment gradually decreases to 6.77 Debye during the reaction, indicating a reduction in the system’s charge separation and polarization. This contribution is anticipated to provide a new theoretical clue for developing inorganic oxide carriers of platinum compounds. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

18 pages, 6498 KB  
Article
Phlogopite 40Ar/39Ar Geochronology for Guodian Skarn Fe Deposit in Qihe–Yucheng District, Luxi Block, North China Craton: A Link between Craton Destruction and Fe Mineralization
by Qiwei Feng, Mingbo Gao, Chao Fu, Siyuan Li, Yadong Li, Jilei Gao, Ming Ma, Zhaozhong Wang, Yidan Zhu, Binglu Wu, Zhuang Duan and Zhicai Dang
Minerals 2024, 14(7), 690; https://doi.org/10.3390/min14070690 - 1 Jul 2024
Cited by 3 | Viewed by 1522
Abstract
The Guodian Fe deposit is representative of the newly discovered Qihe–Yucheng high-grade Fe skarn ore cluster, Luxi Block, eastern North China Craton (NCC). The age of the Pandian Fe deposit remains elusive, which hinders the understanding of its metallogenic tectonic background. Phlogopites are [...] Read more.
The Guodian Fe deposit is representative of the newly discovered Qihe–Yucheng high-grade Fe skarn ore cluster, Luxi Block, eastern North China Craton (NCC). The age of the Pandian Fe deposit remains elusive, which hinders the understanding of its metallogenic tectonic background. Phlogopites are recognized in syn-ore stages, and they are closely associated with magnetite in the Guodian skarn Fe deposit. Here, we carried out 40Ar/39Ar dating of phlogopite, which can place a tight constraint on the timing of Guodian iron mineralization and shed light on the geodynamic framework under which the Guodian Fe deposit formed. Ore-related phlogopite 40Ar/39Ar dating yielded 40Ar/39Ar plateau ages of 131.6 ± 1.7 Ma at 890–1400 °C, with the corresponding isochron age being 131.1 ± 2.6 Ma. These two ages are consistent within the error, indicating that they can represent the formation age of the Guodian iron deposit. The mineralization age overlaps the zircon U-Pb age of 124.4 Ma for ore-related Pandian pluton. This age consistency confirms that the iron skarn mineralization is temporally and likely genetically related to Pandian diorite. The present results, coupled with existing isotopic age data, indicate the Guodian skarn Fe deposit formed contemporaneously with large-scale skarn iron mineralization over the Luxi Block in the Late Mesozoic. The available data demonstrated that the eastern NCC was “destructed” in the Late Mesozoic, as marked by voluminous igneous rocks, faulted-basin formation, high crustal heat flow, and widespread metamorphic core complexes in the eastern part of the NCC. It is thus suggested that the Guodian Fe skarn deposits, together with other deposits of similar ages in the Luxi Block and even in the eastern NCC, were products of this craton destruction. Lithospheric extension and extensive magmatism related to the craton destruction may have provided sufficient heat energy, fluid, chlorine, and Fe for the formation of the Fe deposit. Full article
Show Figures

Figure 1

17 pages, 1308 KB  
Article
Real-Time Three-Dimensional Tracking of Distant Moving Objects Using Non-Imaging Single-Pixel LiDAR
by Zijun Guo, Zixin He, Runbo Jiang, Zhicai Li, Huiling Chen, Yingjian Wang and Dongfeng Shi
Remote Sens. 2024, 16(11), 1924; https://doi.org/10.3390/rs16111924 - 27 May 2024
Cited by 7 | Viewed by 2107
Abstract
The real-time tracking of moving objects has extensive applications in various domains. Existing tracking methods typically utilize video image processing, but their performance is limited due to the high information throughput and computational requirements associated with processing continuous images. Additionally, imaging in certain [...] Read more.
The real-time tracking of moving objects has extensive applications in various domains. Existing tracking methods typically utilize video image processing, but their performance is limited due to the high information throughput and computational requirements associated with processing continuous images. Additionally, imaging in certain spectral bands can be costly. This paper proposes a non-imaging real-time three-dimensional tracking technique for distant moving targets using single-pixel LiDAR. This novel approach involves compressing scene information from three-dimensional to one-dimensional space using spatial encoding modulation and then obtaining this information through single-pixel detection. A LiDAR system is constructed based on this method, where the peak position of the detected full-path one-dimensional echo signal is used to obtain the target distance, while the peak intensity is used to obtain the azimuth and pitch information of the moving target. The entire process requires minimal data collection and a low computational load, making it feasible for the real-time three-dimensional tracking of single or multiple moving targets. Outdoor experiments confirmed the efficacy of the proposed technology, achieving a distance accuracy of 0.45 m and an azimuth and pitch angle accuracy of approximately 0.03° in localizing and tracking a flying target at a distance of 3 km. Full article
Show Figures

Graphical abstract

12 pages, 1832 KB  
Technical Note
Effect of Argo Salinity Drift since 2016 on the Estimation of Regional Steric Sea Level Change Rates
by Lu Tang, Hao Zhou, Jin Li, Penghui Wang, Xiaoli Su and Zhicai Luo
Remote Sens. 2024, 16(11), 1855; https://doi.org/10.3390/rs16111855 - 23 May 2024
Cited by 1 | Viewed by 1488
Abstract
Since 2016, the Argo (Array for Real-Time Geostrophic Oceanography) ocean salinity data has exhibited significant drift, directly affecting the accurate quantification of the global steric sea level (SSL) rates. To further investigate how salinity drift affects the estimation of SSL rates in different [...] Read more.
Since 2016, the Argo (Array for Real-Time Geostrophic Oceanography) ocean salinity data has exhibited significant drift, directly affecting the accurate quantification of the global steric sea level (SSL) rates. To further investigate how salinity drift affects the estimation of SSL rates in different depths and regions, we divide the 0–2000 m into three layers (0–300 m, 300–1000 m and 1000–2000 m) and select five open oceans (the South and North Pacific, the South and North Atlantic, and the Indian Ocean) for discussion. By comparing the SSL rates between the periods of 2005–2015 and 2005–2019, we can evaluate the impact of salinity drift. Taking the estimated results from the IPRC (provided by the International Pacific Research Center at the University of Hawaii) and BOA (provided by the Second Institute of Oceanography, China) data as examples, we find that the effect of salinity drift is the largest at the depth of 1000–2000 m, about 29% for IPRC data and about 18% for BOA data. Moreover, the South Atlantic is susceptible to the effects of salinity drift, with an approximately 13% impact for IPRC data and 21% for BOA data. Full article
(This article belongs to the Special Issue Applications of Satellite Geodesy for Sea-Level Change Observation)
Show Figures

Graphical abstract

23 pages, 5940 KB  
Article
Deconvolution Enhancement Keypoint Network for Efficient Fish Fry Counting
by Ximing Li, Zhicai Liang, Yitao Zhuang, Zhe Wang, Huan Zhang, Yuefang Gao and Yubin Guo
Animals 2024, 14(10), 1490; https://doi.org/10.3390/ani14101490 - 17 May 2024
Cited by 3 | Viewed by 1913
Abstract
Fish fry counting has been vital in fish farming, but current computer-based methods are not feasible enough to accurately and efficiently calculate large number of fry in a single count due to severe occlusion, dense distribution and the small size of fish fry. [...] Read more.
Fish fry counting has been vital in fish farming, but current computer-based methods are not feasible enough to accurately and efficiently calculate large number of fry in a single count due to severe occlusion, dense distribution and the small size of fish fry. To address this problem, we propose the deconvolution enhancement keypoint network (DEKNet), a method for fish fry counting that features a single-keypoint approach. This novel approach models the fish fry as a point located in the central part of the fish head, laying the foundation for our innovative counting strategy. To be specific, first, a fish fry feature extractor (FFE) characterized by parallel dual branches is designed for high-resolution representation. Next, two identical deconvolution modules (TDMs) are added to the generation head for a high-quality and high-resolution keypoint heatmap with the same resolution size as the input image, thus facilitating the precise counting of fish fry. Then, the local peak value of the heatmap is obtained as the keypoint of the fish fry, so the number of these keypoints with coordinate information equals the number of fry, and the coordinates of the keypoint can be used to locate the fry. Finally, FishFry-2023, a large-scale fish fry dataset, is constructed to evaluate the effectiveness of the method proposed by us. Experimental results show that an accuracy rate of 98.59% was accomplished in fish fry counting. Furthermore, DEKNet achieved a high degree of accuracy on the Penaeus dataset (98.51%) and an MAE of 13.32 on a public dataset known as Adipocyte Cells. The research outcomes reveal that DEKNet has superior comprehensive performance in counting accuracy, the number of parameters and computational effort. Full article
Show Figures

Figure 1

16 pages, 9579 KB  
Article
Metabolic Pathway Engineering Improves Dendrobine Production in Dendrobium catenatum
by Meili Zhao, Yanchang Zhao, Zhenyu Yang, Feng Ming, Jian Li, Demin Kong, Yu Wang, Peng Chen, Meina Wang and Zhicai Wang
Int. J. Mol. Sci. 2024, 25(1), 397; https://doi.org/10.3390/ijms25010397 - 28 Dec 2023
Cited by 10 | Viewed by 3038
Abstract
The sesquiterpene alkaloid dendrobine, widely recognized as the main active compound and a quality control standard of medicinal orchids in the Chinese Pharmacopoeia, demonstrates diverse biological functions. In this study, we engineered Dendrobium catenatum as a chassis plant for the production of dendrobine [...] Read more.
The sesquiterpene alkaloid dendrobine, widely recognized as the main active compound and a quality control standard of medicinal orchids in the Chinese Pharmacopoeia, demonstrates diverse biological functions. In this study, we engineered Dendrobium catenatum as a chassis plant for the production of dendrobine through the screening and pyramiding of key biosynthesis genes. Initially, previously predicted upstream key genes in the methyl-D-erythritol 4-phosphate (MEP) pathway for dendrobine synthesis, including 4-(Cytidine 5′-Diphospho)-2-C-Methyl-d-Erythritol Kinase (CMK), 1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase (DXR), 2-C-Methyl-d-Erythritol 4-Phosphate Cytidylyltransferase (MCT), and Strictosidine Synthase 1 (STR1), and a few downstream post-modification genes, including Cytochrome P450 94C1 (CYP94C1), Branched-Chain-Amino-Acid Aminotransferase 2 (BCAT2), and Methyltransferase-like Protein 23 (METTL23), were chosen due to their deduced roles in enhancing dendrobine production. The seven genes (SG) were then stacked and transiently expressed in the leaves of D. catenatum, resulting in a dendrobine yield that was two-fold higher compared to that of the empty vector control (EV). Further, RNA-seq analysis identified Copper Methylamine Oxidase (CMEAO) as a strong candidate with predicted functions in the post-modification processes of alkaloid biosynthesis. Overexpression of CMEAO increased dendrobine content by two-fold. Additionally, co-expression analysis of the differentially expressed genes (DEGs) by weighted gene co-expression network analysis (WGCNA) retrieved one regulatory transcription factor gene MYB61. Overexpression of MYB61 increased dendrobine levels by more than two-fold in D. catenatum. In short, this work provides an efficient strategy and prospective candidates for the genetic engineering of D. catenatum to produce dendrobine, thereby improving its medicinal value. Full article
Show Figures

Figure 1

19 pages, 3783 KB  
Article
Genesis of the Daliuhang Gold Deposit, Jiaodong Peninsula, Eastern China: Constraints from H-O-S-Pb-He-Ar Isotopes, and Geochronology
by Jiepeng Tian, Junjian Li, Xuan Wu, Chao Fu, Zhicai Dang, Pengpeng Zhang, Jiangtao He, Wenlong Tang and Ruicong Tian
Minerals 2023, 13(10), 1339; https://doi.org/10.3390/min13101339 - 19 Oct 2023
Cited by 3 | Viewed by 2326
Abstract
The Daliuhang gold deposit in the Qipengfu (Qixia–Penglai–Fushan) ore concentration area is a typical gold deposit of medium-low temperature hydrothermal veins. Uncertainties regarding the primary sources of ore-forming fluids, as well as whether host rocks contribute materials to the mineralization of the gold [...] Read more.
The Daliuhang gold deposit in the Qipengfu (Qixia–Penglai–Fushan) ore concentration area is a typical gold deposit of medium-low temperature hydrothermal veins. Uncertainties regarding the primary sources of ore-forming fluids, as well as whether host rocks contribute materials to the mineralization of the gold deposits in the Jiaodong Peninsula, are still subject to intense debate. Hydrogen–oxygen isotope results show that atmospheric water is involved in ore-forming fluids. According to the results of the helium–argon isotopes of pyrite, it is hypothesized that the initial fluid source was located in the oceanic crust or upper mantle lithosphere above the Early Cretaceous Paleo-Pacific Plate, as it was subducted into the eastern part of the eastern North China Craton. In situ sulfur isotope results show that high δ34S values characterize the pyrite in the main mineralization period. It is inferred that during the thinning and melting process of the lithospheric mantle, the volatile components enriched in pyrite contributed to the release of δ34S. At the same time, when the fluids ascended to the weak zones, such as fissures of ore-endowed peripheral rocks, the δ34S in the peripheral rocks were extracted, and the two processes acted together to cause high δ34S values to occur. Similarly, the lead and strontium isotopic compositions indicate a crust–mantle mixing attribute of the mineralized material source. The zircon U–Pb age of the ore-hosting granodiorite was 130.35 ± 0.55 Ma, and the Rb–Sr isochron age of the pyrite from the main mineralization period was 117.60 ± 0.10 Ma, which represents the timing of felsic magmatism and gold mineralization, respectively, with at least 10 Ma between the magmatism and mineralization. The magma gradually cooled over time after its formation, and when the granodiorite cooled down to 300 ± 50 °C, the temperature and pressure conditions were most conducive to the precipitation of gold. It is inferred that gold-rich initial mantle fluids with volatile components, rising along tectonically weak zones, such as fractures, underwent fluid phase separation in the fractured position of the granite and extracted the gold from the granodiorite, forming gold deposits. Full article
Show Figures

Figure 1

16 pages, 4372 KB  
Article
Assessing the Nonlinear Changes in Global Navigation Satellite System Vertical Time Series with Environmental Loading in Mainland China
by Jie Zhang, Zhicai Li, Peng Zhang, Fei Yang, Junli Wu, Xuchun Liu, Xiaoqing Wang and Qianchi Tan
Remote Sens. 2023, 15(16), 4115; https://doi.org/10.3390/rs15164115 - 21 Aug 2023
Cited by 3 | Viewed by 2052
Abstract
This study investigated the nonlinear changes in the vertical motion of 411 GNSS reference stations situated in mainland China and assessed the influence of the environmental load on their vertical displacement. The researchers evaluated the effect of environmental load by calculating the change [...] Read more.
This study investigated the nonlinear changes in the vertical motion of 411 GNSS reference stations situated in mainland China and assessed the influence of the environmental load on their vertical displacement. The researchers evaluated the effect of environmental load by calculating the change in annual cycle amplitude before and after its removal, focusing on its impact across regions with distinct foundation types. The results demonstrate that removing the environmental load led to a considerable reduction of approximately 50.25% in the annual cycle amplitude of vertical motion for GNSS reference stations in mainland China. This reduction in amplitude improved the positioning accuracy of the stations, with the highest WRMS reduction being 2.72 mm and an average reduction of 1.03 mm. The most significant impact was observed in the southwestern, northern, and northwestern regions, where the amplitude experienced a notable decrease. Conversely, the southeastern region exhibited a corresponding increase in amplitude. This article innovatively explored the effects of environmental loads on diverse foundation types. When categorizing GNSS reference stations based on their foundation type, namely, bedrock, 18 m soil layer, and 4–8 m soil layer stations, this study found that removing the environmental load resulted in reductions in annual cycle amplitudes of 49.37%, 59.61%, and 46.48%, respectively. These findings indicate that 18 m soil layer stations were more susceptible to environmental load-induced vertical motion. In conclusion, the impact of the environmental load was crucial when analyzing the vertical motion of GNSS reference stations in mainland China, as it was essential for establishing a high-precision coordinate reference framework and studying the tectonic structure of the region. Full article
(This article belongs to the Special Issue New Progress in GNSS Data Processing Technology and Modeling)
Show Figures

Figure 1

16 pages, 3690 KB  
Article
RAGE–TLR4 Crosstalk Is the Key Mechanism by Which High Glucose Enhances the Lipopolysaccharide-Induced Inflammatory Response in Primary Bovine Alveolar Macrophages
by Longfei Yan, Yanran Li, Tianyu Tan, Jiancheng Qi, Jing Fang, Hongrui Guo, Zhihua Ren, Liping Gou, Yi Geng, Hengmin Cui, Liuhong Shen, Shumin Yu, Zhisheng Wang and Zhicai Zuo
Int. J. Mol. Sci. 2023, 24(8), 7007; https://doi.org/10.3390/ijms24087007 - 10 Apr 2023
Cited by 10 | Viewed by 3097
Abstract
The receptor of advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4) are important receptors for inflammatory responses induced by high glucose (HG) and lipopolysaccharide (LPS) and show crosstalk phenomena in inflammatory responses. However, it is unknown whether RAGE and TLR4 can [...] Read more.
The receptor of advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4) are important receptors for inflammatory responses induced by high glucose (HG) and lipopolysaccharide (LPS) and show crosstalk phenomena in inflammatory responses. However, it is unknown whether RAGE and TLR4 can influence each other’s expression through a crosstalk mechanism and whether the RAGE–TLR4 crosstalk related to the molecular mechanism of HG enhances the LPS-induced inflammatory response. In this study, the implications of LPS with multiple concentrations (0, 1, 5, and 10 μg/mL) at various treatment times (0, 3, 6, 12, and 24 h) in primary bovine alveolar macrophages (BAMs) were explored. The results showed that a 5 μg/mL LPS treatment at 12 h had the most significant increment on the pro-inflammatory cytokine interleukin 1β (IL-1β), IL-6, and tumor necrosis factor (TNF)-α levels in BAMs (p < 0.05) and that the levels of TLR4, RAGE, MyD88, and NF-κB p65 mRNA and protein expression were upregulated (p < 0.05). Then, the effect of LPS (5 μg/mL) and HG (25.5 mM) co-treatment in BAMs was explored. The results further showed that HG significantly enhanced the release of IL-1β, IL-6, and TNF-α caused by LPS in the supernatant (p < 0.01) and significantly increased the levels of RAGE, TLR4, MyD88, and NF-κB p65 mRNA and protein expression (p < 0.01). Pretreatment with FPS-ZM1 and TAK-242, the inhibitors of RAGE and TLR4, significantly alleviated the HG + LPS-induced increment of RAGE, TLR4, MyD88, and NF-κB p65 mRNA and protein expression in the presence of HG and LPS (p < 0.01). This study showed that RAGE and TLR4 affect each other’s expression through crosstalk during the combined usage of HG and LPS and synergistically activate the MyD88/NF-κB signaling pathway to promote the release of pro-inflammatory cytokines in BAMs. Full article
(This article belongs to the Special Issue The Role of Toll-Like Receptors (TLR) in Infection and Inflammation)
Show Figures

Figure 1

24 pages, 7797 KB  
Article
Changing Relationships between Water Content and Spectral Features in Moso Bamboo Leaves under Pantana phyllostachysae Chao Stress
by Zhanghua Xu, Bin Li, Hui Yu, Huafeng Zhang, Xiaoyu Guo, Zenglu Li, Lin Wang, Zhicai Liu, Yifan Li, Anqi He and Xuying Huang
Forests 2023, 14(4), 702; https://doi.org/10.3390/f14040702 - 29 Mar 2023
Cited by 8 | Viewed by 2199
Abstract
Leaf water content (LWC) is very important in the growth of vegetation. LWC and leaf spectra change when the leaves are under pest stress; exploring the change mechanism between LWC, leaf spectra, and pest stress can lay the foundation for pest detection. In [...] Read more.
Leaf water content (LWC) is very important in the growth of vegetation. LWC and leaf spectra change when the leaves are under pest stress; exploring the change mechanism between LWC, leaf spectra, and pest stress can lay the foundation for pest detection. In this study, we measured the LWC and leaf spectra of moso bamboo leaves under different damage levels, used the Pearson–Lasso method to screen the features, and established a multiple linear regression (MLR) and random forest regression (RFR) model to estimate the LWC. We analyzed the relationship between LWC and spectral features of moso bamboo leaves under Pantana phyllostachysae Chao (PPC) stress and their changes. The results showed that: (1) the LWC showed a decreasing trend as the pest level increased. (2) The spectra changed substantially when the leaves were under pest stress. (3) The number and significance of response features associated with the LWC were diverse under different damage levels. (4) The estimation of LWC under different damage levels differed significantly. LWC, leaf spectra, response features, and the model estimation effect were diverse under different damage levels. The correlation between LWC and features was higher for healthy leaves than for damaged and off-year leaves. The two models were more effective in estimating the LWC of healthy leaves but less effective for damaged and off-year leaves. This study provides theoretical support for the prediction of PPC stress and lays the foundation for remote sensing monitoring. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

14 pages, 5242 KB  
Article
An Anisotropic Hydrogel by Programmable Ionic Crosslinking for Sequential Two-Stage Actuation under Single Stimulus
by Yanjing Zhang, Xingyu Cao, Yuyu Zhao, Huahuo Li, Shengwei Xiao, Zhangxin Chen, Guobo Huang, Ye Sun, Zhenzhong Liu and Zhicai He
Gels 2023, 9(4), 279; https://doi.org/10.3390/gels9040279 - 29 Mar 2023
Cited by 7 | Viewed by 3132
Abstract
As one of the most important anisotropic intelligent materials, bi-layer stimuli-responsive actuating hydrogels have proven their wide potential in soft robots, artificial muscles, biosensors, and drug delivery. However, they can commonly provide a simple one-actuating process under one external stimulus, which severely limits [...] Read more.
As one of the most important anisotropic intelligent materials, bi-layer stimuli-responsive actuating hydrogels have proven their wide potential in soft robots, artificial muscles, biosensors, and drug delivery. However, they can commonly provide a simple one-actuating process under one external stimulus, which severely limits their further application. Herein, we have developed a new anisotropic hydrogel actuator by local ionic crosslinking on the poly(acrylic acid) (PAA) hydrogel layer of the bi-layer hydrogel for sequential two-stage bending under a single stimulus. Under pH = 13, ionic-crosslinked PAA networks undergo shrinking (-COO/Fe3+ complexation) and swelling (water absorption) processes. As a combination of Fe3+ crosslinked PAA hydrogel (PAA@Fe3+) with non-swelling poly(3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl)propane-1-sulfonate) (PZ) hydrogel, the as-prepared PZ-PAA@Fe3+ bi-layer hydrogel exhibits distinct fast and large-amplitude bidirectional bending behavior. Such sequential two-stage actuation, including bending orientation, angle, and velocity, can be controlled by pH, temperature, hydrogel thickness, and Fe3+ concentration. Furthermore, hand-patterning Fe3+ to crosslink with PAA enables us to achieve various complex 2D and 3D shape transformations. Our work provides a new bi-layer hydrogel system that performs sequential two-stage bending without switching external stimuli, which will inspire the design of programmable and versatile hydrogel-based actuators. Full article
(This article belongs to the Special Issue Bio-Inspired Polymeric Gels and Their Applications)
Show Figures

Graphical abstract

14 pages, 3937 KB  
Article
Co-Firing Zhundong Coal with Its Gangue: Combustion Performance, Sodium Retention and Ash Fusion Behaviors
by Li Zhang, Jingchong Yan, Qitong Yang, Zhiping Lei, Zhao Lei, Zhanku Li, Shibiao Ren, Zhicai Wang and Hengfu Shui
Sustainability 2022, 14(24), 16451; https://doi.org/10.3390/su142416451 - 8 Dec 2022
Cited by 10 | Viewed by 1870
Abstract
Fouling and slagging are intractable ash-related problems for boilers burning high-sodium coals (HSC) to produce electricity or heat. Reduction and resource utilization of solid waste, coal gangues, is urgent because of stringent environmental regulations and economic benefits. Based on the sodium-rich character of [...] Read more.
Fouling and slagging are intractable ash-related problems for boilers burning high-sodium coals (HSC) to produce electricity or heat. Reduction and resource utilization of solid waste, coal gangues, is urgent because of stringent environmental regulations and economic benefits. Based on the sodium-rich character of Zhundong coal (ZDC) and the mineralogical features of the coal gangues (ZDG), this work investigated their co-firing performance, the sodium retention behaviors as well as the slagging and fouling tendency of the ashes. Results show that combustion performance of ZDC is not reduced despite ofthe lower reactivity of ZDG. The co-firing reaction follows the 3D diffusion model (cylinder symmetry) which probably reflects the gas diffusion of oxygen to combustible matter. During co-firing, the enriched silica and alumina components in ZDG efficiently react with the alkali and alkaline earth metals (sodium, magnesium and calcium) in ZDC to form complex minerals, thus effectively capturing and retaining sodium. The slagging and fouling propensity of ashes are notably reduced. Overall, co-firing provides an alternative means to solve the ash slagging and fouling issues, and also for the reduction and resource utilization of coal gangues. Full article
(This article belongs to the Section Sustainable Chemical Engineering and Technology)
Show Figures

Figure 1

Back to TopTop