Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (1,195)

Search Parameters:
Authors = Xiao-Xu Li

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2547 KiB  
Article
Formation and Biological Characteristics Analysis of Artificial Gynogenetic WuLi Carp Induced by Inactivated Sperm of Megalobrama Amblycephala
by Xiaowei Xu, Enkui Hu, Qian Xiao, Xu Huang, Chongqing Wang, Xidan Xu, Kun Zhang, Yue Zhou, Jinhai Bai, Zhengkun Liu, Yuchen Jiang, Yan Tang, Xinyi Deng, Siyang Li, Wanjing Peng, Ling Xiong, Yuhan Yang, Zeyang Li, Ming Ma, Qinbo Qin and Shaojun Liuadd Show full author list remove Hide full author list
Biology 2025, 14(8), 994; https://doi.org/10.3390/biology14080994 (registering DOI) - 4 Aug 2025
Viewed by 15
Abstract
Artificial gynogenesis is an essential technique for aquaculture breeding. Fertile offspring of the WuLi carp (Cyprinus carpio var. Quanzhounensis, 2n = 100, WLC) were successfully produced via gynogenesis using ultraviolet-irradiated sperm from the blunt snout bream (Megalobrama amblycephala, 2 [...] Read more.
Artificial gynogenesis is an essential technique for aquaculture breeding. Fertile offspring of the WuLi carp (Cyprinus carpio var. Quanzhounensis, 2n = 100, WLC) were successfully produced via gynogenesis using ultraviolet-irradiated sperm from the blunt snout bream (Megalobrama amblycephala, 2n = 48, BSB). As anticipated, gonadal section examination confirmed that all gynogenetic WuLi carp (2n = 100, GWB) were female. To investigate whether paternal DNA fragments from BSB were integrated into the GWB genome, comparative analyses of morphological traits, DNA content, chromosomal numbers, 5S rDNA sequences, microsatellite DNA markers, fluorescence in situ hybridization (FISH), growth performance and nutritional composition were systematically conducted between GWB and maternal WLC. The results revealed pronounced maternal inheritance patterns across morphological characteristics, DNA quantification, chromosomal configurations, 5S rDNA sequences and FISH signals, while microsatellite detection unequivocally confirmed paternal BSB DNA fragment integration into the GWB genome. Remarkably, GWB demonstrated significantly superior growth performance and elevated unsaturated fatty acid content relative to the maternal line. This approach not only addressed germplasm degradation in WLC but also provided valuable theoretical foundations for breeding programs in this commercially significant species. Full article
Show Figures

Figure 1

14 pages, 11645 KiB  
Article
Changes of Ecosystem Service Value in the Water Source Area of the West Route of the South–North Water Diversion Project
by Zhimin Du, Bo Li, Bingfei Yan, Fei Xing, Shuhu Xiao, Xiaohe Xu, Yakun Yuan and Yongzhi Liu
Water 2025, 17(15), 2305; https://doi.org/10.3390/w17152305 - 3 Aug 2025
Viewed by 184
Abstract
To ensure water source security and sustainability of the national major strategic project “South-to-North Water Diversion”, this study aims to evaluate the spatio-temporal evolution characteristics of the ecosystem service value (ESV) in its water source area from 2002 to 2022. This study reveals [...] Read more.
To ensure water source security and sustainability of the national major strategic project “South-to-North Water Diversion”, this study aims to evaluate the spatio-temporal evolution characteristics of the ecosystem service value (ESV) in its water source area from 2002 to 2022. This study reveals its changing trends and main influencing factors, and thereby provides scientific support for the ecological protection and management of the water source area. Quantitative assessment of the ESV of the region was carried out using the Equivalence Factor Method (EFM), aiming to provide scientific support for ecological protection and resource management decision-making. In the past 20 years, the ESV has shown an upward trend year by year, increasing by 96%. The regions with the highest ESV were Garzê Prefecture and Aba Prefecture, which increased by 130.3% and 60.6%, respectively. The ESV of Xinlong county, Danba county, Rangtang county, and Daofu county increased 4.8 times, 1.5 times, 12.5 times, and 8.9 times, respectively. In the last two decades, arable land has decreased by 91%, while the proportions of bare land and water have decreased by 84% and 91%, respectively. Grassland had the largest proportion. Forests and grasslands, vital for climate regulation, water cycle management, and biodiversity conservation, have expanded by 74% and 43%, respectively. It can be seen from Moran’s I index values that the dataset as a whole showed a slight positive spatial autocorrelation, which increased from −0.041396 to 0.046377. This study reveals the changing trends in ESV and the main influencing factors, and thereby provides scientific support for the ecological protection and management of the water source area. Full article
(This article belongs to the Special Issue Watershed Ecohydrology and Water Quality Modeling)
Show Figures

Figure 1

18 pages, 4456 KiB  
Article
Study on the Filling and Plugging Mechanism of Oil-Soluble Resin Particles on Channeling Cracks Based on Rapid Filtration Mechanism
by Bangyan Xiao, Jianxin Liu, Feng Xu, Liqin Fu, Xuehao Li, Xianhao Yi, Chunyu Gao and Kefan Qian
Processes 2025, 13(8), 2383; https://doi.org/10.3390/pr13082383 - 27 Jul 2025
Viewed by 393
Abstract
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their [...] Read more.
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their excellent oil solubility, temperature/salt resistance, and high strength. However, their application is limited by the efficient filling and retention in deep fractures. This study innovatively combines the OSR particle plugging system with the mature rapid filtration loss plugging mechanism in drilling, systematically exploring the influence of particle size and sorting on their filtration, packing behavior, and plugging performance in channeling fractures. Through API filtration tests, visual fracture models, and high-temperature/high-pressure (100 °C, salinity 3.0 × 105 mg/L) core flow experiments, it was found that well-sorted large particles preferentially bridge in fractures to form a high-porosity filter cake, enabling rapid water filtration from the resin plugging agent. This promotes efficient accumulation of OSR particles to form a long filter cake slug with a water content <20% while minimizing the invasion of fine particles into matrix pores. The slug thermally coalesces and solidifies into an integral body at reservoir temperature, achieving a plugging strength of 5–6 MPa for fractures. In contrast, poorly sorted particles or undersized particles form filter cakes with low porosity, resulting in slow water filtration, high water content (>50%) in the filter cake, insufficient fracture filling, and significantly reduced plugging strength (<1 MPa). Finally, a double-slug strategy is adopted: small-sized OSR for temporary plugging of the oil layer injection face combined with well-sorted large-sized OSR for main plugging of channeling fractures. This strategy achieves fluid diversion under low injection pressure (0.9 MPa), effectively protects reservoir permeability (recovery rate > 95% after backflow), and establishes high-strength selective plugging. This study clarifies the core role of particle size and sorting in regulating the OSR plugging effect based on rapid filtration loss, providing key insights for developing low-damage, high-performance channeling plugging agents and scientific gradation of particle-based plugging agents. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 10838 KiB  
Article
Transcription Factor LjWRKY50 Affects Jasmonate-Regulated Floral Bud Duration in Lonicera japonica
by Yanfei Li, Yutong Gan, Guihong Qi, Wenjie Xu, Tianyi Xin, Yuanhao Huang, Lianguo Fu, Lijun Hao, Qian Lou, Xiao Fu, Xiangyun Wei, Lijun Liu, Chengming Liu and Jingyuan Song
Plants 2025, 14(15), 2328; https://doi.org/10.3390/plants14152328 - 27 Jul 2025
Viewed by 358
Abstract
Lonicera japonica Thunb. is a traditional Chinese medicinal herb whose floral buds are the primary source of pharmacological compounds that require manual harvesting. As a result, its floral bud duration, determined by the opening time, is a key determinant of both quality and [...] Read more.
Lonicera japonica Thunb. is a traditional Chinese medicinal herb whose floral buds are the primary source of pharmacological compounds that require manual harvesting. As a result, its floral bud duration, determined by the opening time, is a key determinant of both quality and economic value. However, the genetic mechanisms controlling floral bud duration remain poorly understood. In this study, we employed population structure analysis and molecular experiments to identify candidate genes associated with this trait. The improved cultivar Beihua No. 1 (BH1) opens its floral buds significantly later than the landrace Damaohua (DMH). Exogenous application of methyl jasmonate (MeJA) to BH1 indicated that jasmonate acts as a negative regulator of floral bud duration by accelerating floral bud opening. A genome-wide selection scan across 35 germplasms with varying floral bud durations identified the transcription factor LjWRKY50 as the causative gene influencing this trait. The dual-luciferase reporter assay and qRT-PCR experiments showed that LjWRKY50 activates the expression of the jasmonate biosynthesis gene, LjAOS. A functional variant within LjWRKY50 (Chr7:24636061) was further developed into a derived cleaved amplified polymorphic sequence (dCAPS) marker. These findings provide valuable insights into the jasmonate-mediated regulation of floral bud duration, offering genetic and marker resources for molecular breeding in L. japonica. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

22 pages, 1649 KiB  
Article
High Warming Restricts the Growth and Movement of a Larval Chinese Critically Endangered Relict Newt
by Wei Li, Shiyan Feng, Shanshan Zhao, Di An, Jindi Mao, Xiao Song, Wei Zhang and Aichun Xu
Biology 2025, 14(8), 942; https://doi.org/10.3390/biology14080942 - 27 Jul 2025
Viewed by 330
Abstract
Amphibians are the most threatened vertebrates, yet their resilience in relation to growth and locomotor performance with rising temperatures remains poorly understood. Here, we chose a critically endangered amphibian—the Chinhai spiny newt (Echinotriton chinhaiensis)—as the study species and set four water [...] Read more.
Amphibians are the most threatened vertebrates, yet their resilience in relation to growth and locomotor performance with rising temperatures remains poorly understood. Here, we chose a critically endangered amphibian—the Chinhai spiny newt (Echinotriton chinhaiensis)—as the study species and set four water temperature gradients (20 °C, 24 °C, 28 °C, and 32 °C) to simulate climate changes. The thermal performance to climate warming was quantified by measuring morphometric parameters, basal metabolic rate (oxygen consumption rate), and the locomotor performance of Chinhai spiny newt larvae. We found that the optimal temperature range for Chinhai spiny newt larvae is 24–28 °C. Within the temperature range of 24–28 °C, the growth, oxygen consumption rate, and locomotor performance of the larvae were positively correlated with temperature. High temperatures inhibited larval growth, oxygen consumption rate, and locomotor performance, and the temperature threshold was 32 °C. In addition, Chinhai spiny newt larvae are more sensitive to acute temperature changes, meaning that climate-driven extreme events (e.g., heatwaves and droughts) pose significant threats to their larvae. The optimal temperature range obtained from this study could guide artificial breeding and early warming; future studies should integrate controlled temperature fluctuations in order to understand the thermal adaption of this threatened species. Full article
(This article belongs to the Special Issue Progress in Wildlife Conservation, Management and Biological Research)
Show Figures

Figure 1

25 pages, 1098 KiB  
Article
Association of Breakfast Food Types with Dietary Knowledge, Attitudes, and Practices Among School-Aged Children
by Siyao Zhou, Hanqing Zhao, Yu Xiao, Jie Li, Qiaoli Huang, Yufang Zhang, Fengfeng Guo, Beibei Xu, Haoyan Zou, Xiaoxia Huang, Sizhe Huang and Lijun Wang
Nutrients 2025, 17(15), 2424; https://doi.org/10.3390/nu17152424 - 24 Jul 2025
Viewed by 242
Abstract
Background: Skipping breakfast, a prevalent issue among children and adolescents, has been reported to be associated with academic performance and long-term health. However, less attention has been given to the types of breakfast foods consumed. Therefore, our study aims to investigate the association [...] Read more.
Background: Skipping breakfast, a prevalent issue among children and adolescents, has been reported to be associated with academic performance and long-term health. However, less attention has been given to the types of breakfast foods consumed. Therefore, our study aims to investigate the association between breakfast variety and dietary knowledge, attitude, and practice (KAP) among preadolescents. Methods: The study included 1449 students in grades 4–6 from Zhongshan city, Guangdong province. Data were collected through face-to-face field investigation using a validated questionnaire. The questionnaire encompassed sociodemographic characteristics, as well as dietary KAP. Results: Among all participants, 1315 reported consuming breakfast daily. Dietary diversity varied significantly: 8.8% consumed only 1 type of food, 52.9% consumed 2–4 types, and 38.3% consumed ≥5 types. Students who consumed a greater variety of breakfast foods exhibited more favorable dietary and lifestyle patterns. Specifically, those who consumed ≥5 types of food showed statistically significant associations with healthier practices, including reduced intake of sugary beverages and night snacks, stronger adherence to dietary guidelines, more positive attitudes toward improving eating habits, longer sleep durations, increased participation in meal preparation, greater dish variety in meals, and higher engagement in daily physical activity. Conclusions: Breakfast variety was associated with KAP, particularly when breakfast types ≥ 5, providing more sufficient and favorable evidence for breakfast consumption. Full article
(This article belongs to the Special Issue Nutrient Intake and Food Patterns in Students)
Show Figures

Figure 1

20 pages, 7143 KiB  
Article
Predicting Potentially Suitable Habitats and Analyzing the Distribution Patterns of the Rare and Endangered Genus Syndiclis Hook. f. (Lauraceae) in China
by Lang Huang, Weihao Yao, Xu Xiao, Yang Zhang, Rui Chen, Yanbing Yang and Zhi Li
Plants 2025, 14(15), 2268; https://doi.org/10.3390/plants14152268 - 23 Jul 2025
Viewed by 275
Abstract
Changes in habitat suitability are critical indicators of the ecological impacts of climate change. Syndiclis Hook. f., a rare and endangered genus endemic to montane limestone and cloud forest ecosystems in China, holds considerable ecological and economic value. However, knowledge of its current [...] Read more.
Changes in habitat suitability are critical indicators of the ecological impacts of climate change. Syndiclis Hook. f., a rare and endangered genus endemic to montane limestone and cloud forest ecosystems in China, holds considerable ecological and economic value. However, knowledge of its current distribution and the key environmental factors influencing its habitat suitability remains limited. In this study, we employed the MaxEnt model, integrated with geographic information systems (ArcGIS), to predict the potential distribution of Syndiclis under current and future climate scenarios, identify dominant bioclimatic drivers, and assess temporal and spatial shifts in habitat patterns. We also analyzed spatial displacement of habitat centroids to explore potential migration pathways. The model demonstrated excellent performance (AUC = 0.988), with current suitable habitats primarily located in Hainan, Taiwan, Southeastern Yunnan, and along the Yunnan–Guangxi border. Temperature seasonality (bio7) emerged as the most important predictor (67.00%), followed by precipitation of the driest quarter (bio17, 14.90%), while soil factors played a relatively minor role. Under future climate projections, Hainan and Taiwan are expected to serve as stable climatic refugia, whereas the overall suitable habitat area is projected to decline significantly. Combined with topographic constraints, population decline, and limited dispersal ability, these changes elevate the risk of extinction for Syndiclis in the wild. Landscape pattern analysis revealed increased habitat fragmentation under warming conditions, with only 4.08% of suitable areas currently under effective protection. We recommend prioritizing conservation efforts in regions with habitat contraction (e.g., Guangxi and Yunnan) and stable refugia (e.g., Hainan and Taiwan). Conservation strategies should integrate targeted in situ and ex situ actions, guided by dominant environmental variables and projected migration routes, to ensure the long-term persistence of Syndiclis populations and support evidence-based conservation planning. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

25 pages, 8728 KiB  
Article
Trans-Sodium Crocetinate Ameliorates High-Altitude Acute Lung Injury via Modulating EGFR/PI3K/AKT/NF-κB Signaling Axis
by Keke Liang, Yanlin Ta, Liang Xu, Shuhe Ma, Renjie Wang, Chenrong Xiao, Yue Gao and Maoxing Li
Nutrients 2025, 17(15), 2406; https://doi.org/10.3390/nu17152406 - 23 Jul 2025
Viewed by 371
Abstract
Objectives: Saffron, a traditional Chinese medicine, is renowned for its pharmacological effects in promoting blood circulation, resolving blood stasis, regulating menstruation, detoxification, and alleviating mental disturbances. Trans-crocetin, its principal bioactive component, exhibits significant anti-hypoxic activity. The clinical development and therapeutic efficacy of [...] Read more.
Objectives: Saffron, a traditional Chinese medicine, is renowned for its pharmacological effects in promoting blood circulation, resolving blood stasis, regulating menstruation, detoxification, and alleviating mental disturbances. Trans-crocetin, its principal bioactive component, exhibits significant anti-hypoxic activity. The clinical development and therapeutic efficacy of trans-crocetin are limited by its instability, poor solubility, and low bioavailability. Conversion of trans-crocetin into trans-sodium crocetinate (TSC) enhances its solubility, stability, and bioavailability, thereby amplifying its anti-hypoxic potential. Methods: This study integrates network pharmacology with in vivo and in vitro validation to elucidate the molecular targets and mechanisms underlying TSC’s therapeutic effects against high-altitude acute lung injury (HALI), aiming to identify novel treatment strategies. Results: TSC effectively reversed hypoxia-induced biochemical abnormalities, ameliorated lung histopathological damage, and suppressed systemic inflammation and oxidative stress in HALI rats. In vitro, TSC mitigated CoCl2-induced hypoxia injury in human pulmonary microvascular endothelial cells (HPMECs) by reducing inflammatory cytokines, oxidative stress, and ROS accumulation while restoring mitochondrial membrane potential. Network pharmacology and pathway analysis revealed that TSC primarily targets the EGFR/PI3K/AKT/NF-κB signaling axis. Molecular docking and dynamics simulations demonstrated stable binding interactions between TSC and key components of this pathway. ELISA and RT-qPCR confirmed that TSC significantly downregulated the expression of EGFR, PI3K, AKT, NF-κB, and their associated mRNAs. Conclusions: TSC alleviates high-altitude hypoxia-induced lung injury by inhibiting the EGFR/PI3K/AKT/NF-κB signaling pathway, thereby attenuating inflammatory responses, oxidative stress, and restoring mitochondrial function. These findings highlight TSC as a promising therapeutic agent for HALI. Full article
(This article belongs to the Special Issue Natural Active Compounds in Inflammation and Metabolic Diseases)
Show Figures

Figure 1

28 pages, 7072 KiB  
Review
Research Progress and Future Prospects of Key Technologies for Dryland Transplanters
by Tingbo Xu, Xiao Li, Jijia He, Shuaikang Han, Guibin Wang, Daqing Yin and Maile Zhou
Appl. Sci. 2025, 15(14), 8073; https://doi.org/10.3390/app15148073 - 20 Jul 2025
Viewed by 369
Abstract
Seedling transplantation, a pivotal component in advancing the cultivation of vegetables and cash crops, significantly bolsters crops’ resilience against drought, cold, pests, and diseases, while substantially enhancing yields. The implementation of transplanting machinery not only remarkably alleviates the labor-intensive nature of transplantation but [...] Read more.
Seedling transplantation, a pivotal component in advancing the cultivation of vegetables and cash crops, significantly bolsters crops’ resilience against drought, cold, pests, and diseases, while substantially enhancing yields. The implementation of transplanting machinery not only remarkably alleviates the labor-intensive nature of transplantation but also elevates the precision and uniformity of the process, thereby facilitating mechanized plant protection and harvesting operations. This article summarizes the research status and development trends of mechanized field transplanting technology and equipment. It also analyzes and summarizes the types and current status of typical representative automatic seedling picking mechanisms. Based on the current research status, the challenges of mechanized transplanting technology were analyzed, mainly the following: insufficient integration of agricultural machinery and agronomy; the standards for each stage of transplanting are not perfect; the adaptability of existing transplanting machines is poor; the level of informatization and intelligence of equipment is low; the lack of innovation in key components, such as seedling picking and transplanting mechanisms; and the proposed solutions to address the issues. Corresponding solutions are proposed, such as the following: strengthening interdisciplinary collaboration; establishing standards for transplanting processes; enhancing transplanter adaptability; accelerating intelligentization and digitalization of transplanters; strengthening the theoretical framework; and performance optimization of transplanting mechanisms. Finally, the development direction of future fully automatic transplanting machines was discussed, including the following: improving the transplanting efficiency and quality of transplanting machines; integrating research and development of testing, planting, and seedling supplementation for transplanting machines; unmanned transplanting operations; and fostering collaborative industrial development. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

23 pages, 7547 KiB  
Article
Internal Flow Characteristics in a Prototype Spray Tower Based on CFD
by Xin Li, Hui-Fan Huang, Xiao-Wei Xu and Yu-Liang Zhang
Processes 2025, 13(7), 2308; https://doi.org/10.3390/pr13072308 - 20 Jul 2025
Viewed by 339
Abstract
To investigate the mechanisms by which inlet water velocity and rotational speed affect spray tower performance, computational fluid dynamics (CFD) was employed to analyze key performance indicators, including outlet flow velocity, flow rate, and the ratio of internal to external outlet flow rates. [...] Read more.
To investigate the mechanisms by which inlet water velocity and rotational speed affect spray tower performance, computational fluid dynamics (CFD) was employed to analyze key performance indicators, including outlet flow velocity, flow rate, and the ratio of internal to external outlet flow rates. The results show that outlet flow rate is strongly positively correlated with rotational speed, while inlet water velocity demonstrates nonlinear effects on internal flow velocity. Significant parameter interaction exists—the correlation between inlet velocity and outlet velocity varies with rotational speed (R = −0.9831 to 0.5229), and the outlet flow rate ratio shows a strong negative correlation with rotational speed (R = −0.9918). The gray model demonstrated superior robustness with minimal error fluctuations, whereas the partial least squares regression model exhibited significantly increased errors under extreme conditions. This study provides a theoretical foundation and data support for spray tower parameter optimization. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

20 pages, 1903 KiB  
Article
Study on the Regulatory Effect of Water Extract of Artemisia annua L. on Antioxidant Function of Mutton Sheep via the Keap1/Nrf2 Signaling Pathway
by Gen Gang, Ruiheng Gao, Ruizhen Li, Xiao Jin, Yuanyuan Xing, Sumei Yan, Yuanqing Xu and Binlin Shi
Antioxidants 2025, 14(7), 885; https://doi.org/10.3390/antiox14070885 - 18 Jul 2025
Viewed by 363
Abstract
This study was conducted through in vivo and in vitro experiments and aimed to reveal the regulatory effect of water extract of Artemisia annua L. (WEAA) on the antioxidant function of mutton sheep and the underlying mechanism. In the in vivo experiment, 32 [...] Read more.
This study was conducted through in vivo and in vitro experiments and aimed to reveal the regulatory effect of water extract of Artemisia annua L. (WEAA) on the antioxidant function of mutton sheep and the underlying mechanism. In the in vivo experiment, 32 Dorper × Han female sheep (3 months old; avg. body weight: 24 ± 0.09 kg) were allocated to four groups (eight lambs/group) and fed a diet containing 0, 500, 1000, and 1500 mg/kg WEAA, respectively. In the in vitro experiments, peripheral blood lymphocytes (PBLs) were cultured with different doses of WEAA (0, 25, 50, 100, 200, 400 µg/mL) to determine the optimal concentration, followed by a 2 × 2 factorial experiment with four treatment groups (six replicates per treatment group): the ML385(−)/WEAA(−) group, the ML385(−)/WEAA(+) group, the ML385(+)/WEAA(−) group, and the ML385(+)/WEAA(+) group. The results showed that WEAA supplementation dose-dependently increased serum, liver and spleen tissue total antioxidant capacity, glutathione peroxidase (GSH-Px), and catalase (CAT) activity while reducing malondialdehyde level (p < 0.05). Moreover, WEAA supplementation significantly upregulated the liver and spleen expression of nuclear factor erythroid 2-related factor 2, superoxide dismutase 2, GSH-Px, CAT and NAD(P)H quinone dehydrogenase 1 (p < 0.05) while significantly downregulating the kelch-like ECH associated protein 1 expression in a dose-dependent manner (p < 0.05), thereby activating the Keap1/Nrf2 pathway with the peak effect observed in the 1000 mg/kg WEAA group. Additionally, supplementation with 100 µg/mL of WEAA had significant antioxidation activity in the culture medium of PBLs. Its action mechanism involved the Keap1/Nrf2 pathway; specifically, WEAA exerted its antioxidant effect by upregulating the gene expression related to the Keap1/Nrf2 pathway. In conclusion, WEAA enhances sheep’s antioxidant capacity by up-regulating Keap1/Nrf2 pathway genes and boosting antioxidant enzyme activity. The results provided experimental support for the potential application of WEAA in intensive mutton sheep farming. Full article
Show Figures

Figure 1

21 pages, 5154 KiB  
Article
Mechanical Response Analysis of Ultra-Thin Asphalt Wearing Course Pavement Under Non-Uniform Loading Pressure
by Wei Zhou, Yingying Dou, Chupeng Chen, Yi Yang, Xinquan Xu, Lintao Li, Jiangyin Xiao and Feng Chen
Materials 2025, 18(14), 3335; https://doi.org/10.3390/ma18143335 - 16 Jul 2025
Viewed by 298
Abstract
Traditional ultra-thin asphalt wearing course designs often oversimplify wheel loads as uniform pressures, neglecting critical non-uniform effects. This study establishes a 3D finite element model incorporating realistic non-uniform tire loading to reveal its mechanistic influence on pavement responses. Results demonstrate that non-uniform loading [...] Read more.
Traditional ultra-thin asphalt wearing course designs often oversimplify wheel loads as uniform pressures, neglecting critical non-uniform effects. This study establishes a 3D finite element model incorporating realistic non-uniform tire loading to reveal its mechanistic influence on pavement responses. Results demonstrate that non-uniform loading significantly alters stress states in ultra-thin layers, substantially elevating critical stresses compared to uniform assumptions. A novel Non-uniform Load Influence Factor (NLIF) accounting for thickness effects is developed to quantify these deviations. The analysis provides a foundation for revising material strength specifications and fatigue design criteria, contributing to improved performance and durability of ultra-thin pavement systems. Full article
Show Figures

Figure 1

12 pages, 3178 KiB  
Article
Terahertz Optoelectronic Properties of Monolayer MoS2 in the Presence of CW Laser Pumping
by Ali Farooq, Wen Xu, Jie Zhang, Hua Wen, Qiujin Wang, Xingjia Cheng, Yiming Xiao, Lan Ding, Altayeb Alshiply Abdalfrag Hamdalnile, Haowen Li and Francois M. Peeters
Physics 2025, 7(3), 27; https://doi.org/10.3390/physics7030027 - 14 Jul 2025
Viewed by 333
Abstract
Monolayer (ML) molybdenum disulfide (MoS2) is a typical valleytronic material which has important applications in, for example, polarization optics and information technology. In this study, we examine the effect of continuous wave (CW) laser pumping on the basic optoelectronic properties of [...] Read more.
Monolayer (ML) molybdenum disulfide (MoS2) is a typical valleytronic material which has important applications in, for example, polarization optics and information technology. In this study, we examine the effect of continuous wave (CW) laser pumping on the basic optoelectronic properties of ML MoS2 placed on a sapphire substrate, where the pump photon energy is larger than the bandgap of ML MoS2. The pump laser source is provided by a compact semiconductor laser with a 445 nm wavelength. Through the measurement of THz time-domain spectroscopy, we obtain the complex optical conductivity for ML MoS2, which are found to be fitted exceptionally well with the Drude–Smith formula. Therefore, we expect that the reduction in conductivity in ML MoS2 is mainly due to the effect of electronic backscattering or localization in the presence of the substrate. Meanwhile, one can optically determine the key electronic parameters of ML MoS2, such as the electron density ne, the intra-band electronic relaxation time τ, and the photon-induced electronic localization factor c. The dependence of these parameters upon CW laser pump intensity is examined here at room temperature. We find that 445 nm CW laser pumping results in the larger ne, shorter τ, and stronger c in ML MoS2 indicating that laser excitation has a significant impact on the optoelectronic properties of ML MoS2. The origin of the effects obtained is analyzed on the basis of solid-state optics. This study provides a unique and tractable technique for investigating photo-excited carriers in ML MoS2. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

14 pages, 2472 KiB  
Article
Role of Substitution Patterns in Four Regioisomeric Tetraphenylethylene–Thiophene Derivatives
by Shuai Hou, Hanxiao Tian, Ruiyao Li, Zishuai Huang, Dongyuan Zhu, Fan Xiao, Yunmeng Zhao and Jingjing Xu
Molecules 2025, 30(14), 2953; https://doi.org/10.3390/molecules30142953 - 13 Jul 2025
Viewed by 439
Abstract
Tetraphenylethylene (TPE)–thiophene compounds are promising candidates for stimuli-responsive luminescent materials, yet systematic investigations into the influence of substitution patterns on their photophysical properties remain limited. Herein, four regioisomeric TPE–thiophene derivatives have been synthesized by systematically varying the number and positions of TPE substituents [...] Read more.
Tetraphenylethylene (TPE)–thiophene compounds are promising candidates for stimuli-responsive luminescent materials, yet systematic investigations into the influence of substitution patterns on their photophysical properties remain limited. Herein, four regioisomeric TPE–thiophene derivatives have been synthesized by systematically varying the number and positions of TPE substituents on the thiophene core. A comprehensive spectroscopic characterization reveals that substitution patterns critically modulate the photoluminescence quantum yields (PLQYs). The ortho-monosubstituted isomer exhibits the highest PLQY (52.86% in solid state) compared with the meta-monosubstituted isomer (13.87% in solid state). Interestingly, thiophenes with two or three TPEs substituted at positions 2,5 or 2,3,5 have lower PLQYs, which is rare due to the common understanding that increasing the number of AIE parts should increase the PLQY. Further single-crystal structure analyses show that the key factor impacting the PLQY is the dihedral angles of the TPE subunit, which determines the degree of intramolecular twisting. This work establishes regiochemistry as a powerful design lever for tuning TPE–thiophene photophysics, offering underlying principles for the design of TPE-based thiophene molecules with high photoluminescent performance in the future. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Graphical abstract

24 pages, 13937 KiB  
Article
Investigation into the Strength, Hydration, and Microstructural Characteristics of Clinker-Free Cement Composed of Phosphorus Slag, Fluidized Bed Combustion Bottom Ash, and Lime
by Yanzhou Peng, Haitian Li, Hefei Yin, Ji Xiao and Gang Xu
Materials 2025, 18(14), 3266; https://doi.org/10.3390/ma18143266 - 10 Jul 2025
Viewed by 403
Abstract
This study focuses on developing a novel clinker-free cement, specifically comprising phosphorus slag-based cementitious materials (PSCMs), by utilizing lime and industrial byproducts, including granulated electric furnace phosphorus slag and fluidized bed combustion bottom ash. The optimal composition of PSCM was determined by investigating [...] Read more.
This study focuses on developing a novel clinker-free cement, specifically comprising phosphorus slag-based cementitious materials (PSCMs), by utilizing lime and industrial byproducts, including granulated electric furnace phosphorus slag and fluidized bed combustion bottom ash. The optimal composition of PSCM was determined by investigating the effects of different proportions of activators (water glass and sodium sulfate) and retarder (potassium fluoride) on the setting time and the mechanical strength of PSCMs. Performance evaluations demonstrated that the compressive and flexural strengths of the optimal PSCM formulation at 28 days were 64.1 MPa and 7.5 MPa, respectively. Notably, concrete prepared with the optimal PSCM exhibited superior freeze–thaw resistance and sulfate resistance compared to Portland cement concrete of equivalent strength grades. The comprehensive characterization of selected PSCM compositions, conducted using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscope–energy-dispersive spectrometry (SEM-EDS), provided in-depth insights into the interrelationship among mechanical properties, durability, and microstructural characteristics. SEM-EDS analysis confirmed that calcium aluminosilicate hydrate and sodium aluminosilicate hydrate are the predominant hydration products of PSCMs. FTIR and TG analyses elucidated the continuous hydration behavior of PSCMs during the curing process, while SEM observations revealed a densely compact microstructure in the hardened PSCM paste. Full article
(This article belongs to the Topic Novel Cementitious Materials)
Show Figures

Figure 1

Back to TopTop