Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Roy W. Spencer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 370 KB  
Article
On the Misdiagnosis of Surface Temperature Feedbacks from Variations in Earth’s Radiant Energy Balance
by Roy W. Spencer and William D. Braswell
Remote Sens. 2011, 3(8), 1603-1613; https://doi.org/10.3390/rs3081603 - 25 Jul 2011
Cited by 48 | Viewed by 59604
Abstract
The sensitivity of the climate system to an imposed radiative imbalance remains the largest source of uncertainty in projections of future anthropogenic climate change. Here we present further evidence that this uncertainty from an observational perspective is largely due to the masking of [...] Read more.
The sensitivity of the climate system to an imposed radiative imbalance remains the largest source of uncertainty in projections of future anthropogenic climate change. Here we present further evidence that this uncertainty from an observational perspective is largely due to the masking of the radiative feedback signal by internal radiative forcing, probably due to natural cloud variations. That these internal radiative forcings exist and likely corrupt feedback diagnosis is demonstrated with lag regression analysis of satellite and coupled climate model data, interpreted with a simple forcing-feedback model. While the satellite-based metrics for the period 2000–2010 depart substantially in the direction of lower climate sensitivity from those similarly computed from coupled climate models, we find that, with traditional methods, it is not possible to accurately quantify this discrepancy in terms of the feedbacks which determine climate sensitivity. It is concluded that atmospheric feedback diagnosis of the climate system remains an unsolved problem, due primarily to the inability to distinguish between radiative forcing and radiative feedback in satellite radiative budget observations. Full article
Show Figures

Graphical abstract

22 pages, 396 KB  
Article
What Do Observational Datasets Say about Modeled Tropospheric Temperature Trends since 1979?
by John R. Christy, Benjamin Herman, Roger Pielke, Philip Klotzbach, Richard T. McNider, Justin J. Hnilo, Roy W. Spencer, Thomas Chase and David Douglass
Remote Sens. 2010, 2(9), 2148-2169; https://doi.org/10.3390/rs2092148 - 15 Sep 2010
Cited by 54 | Viewed by 24536
Abstract
Updated tropical lower tropospheric temperature datasets covering the period 1979–2009 are presented and assessed for accuracy based upon recent publications and several analyses conducted here. We conclude that the lower tropospheric temperature (TLT) trend over these 31 years is +0.09 [...] Read more.
Updated tropical lower tropospheric temperature datasets covering the period 1979–2009 are presented and assessed for accuracy based upon recent publications and several analyses conducted here. We conclude that the lower tropospheric temperature (TLT) trend over these 31 years is +0.09 ± 0.03 °C decade−1. Given that the surface temperature (Tsfc) trends from three different groups agree extremely closely among themselves (~ +0.12 °C decade−1) this indicates that the “scaling ratio” (SR, or ratio of atmospheric trend to surface trend: TLT/Tsfc) of the observations is ~0.8 ± 0.3. This is significantly different from the average SR calculated from the IPCC AR4 model simulations which is ~1.4. This result indicates the majority of AR4 simulations tend to portray significantly greater warming in the troposphere relative to the surface than is found in observations. The SR, as an internal, normalized metric of model behavior, largely avoids the confounding influence of short-term fluctuations such as El Niños which make direct comparison of trend magnitudes less confident, even over multi-decadal periods. Full article
(This article belongs to the Special Issue Remote Sensing in Climate Monitoring and Analysis)
Show Figures

Figure 1

Back to TopTop