Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = J. Mark Sutton

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5855 KiB  
Article
Improving Nitrogen Fertilizer Management for Yield and N Use Efficiency in Wetland Rice Cultivation in Bangladesh
by Md. Kamuruzzaman, Robert M. Rees, Md. Torikul Islam, Julia Drewer, Mark Sutton, Arti Bhatia, William J. Bealey and Md. Mahmodol Hasan
Agronomy 2024, 14(12), 2758; https://doi.org/10.3390/agronomy14122758 - 21 Nov 2024
Cited by 2 | Viewed by 1717
Abstract
Achieving high-yielding crops while also improving nitrogen use efficiency is a significant challenge for agricultural production in Bangladesh. We investigated the impacts of applying nitrogen (N) using different management options in wetland rice on a calcareous dark gray soil over three seasons. These [...] Read more.
Achieving high-yielding crops while also improving nitrogen use efficiency is a significant challenge for agricultural production in Bangladesh. We investigated the impacts of applying nitrogen (N) using different management options in wetland rice on a calcareous dark gray soil over three seasons. These included (1) the recommended dose of available N as prilled urea, (2) the recommended N dose plus 25% extra of available N as prilled urea, (3) 25% less than the recommended dose of available N as prilled urea, (4) the recommended dose of prilled urea in 2 t ha−1 cow dung, (5) the recommended dose as urea super granules (USGs) by deep placement, (6) 4 t ha−1 biochar with the recommended dose of prilled urea, and (7) Zero N. It was found that the growth, yield, and N use efficiency (NUE) were significantly different from the results obtained for prilled urea in all the alternative fertilizer options. The deep placement of USG consistently increased plant height, total number of tillers per plant, effective tillers per plant, chlorophyll content, panicle length, grains per panicle, and 1000-grain weight. The yield increases over recommended prilled urea were 5.22% for USG followed by biochar with the recommended dose. Similarly, using the deep placement of USG gave the highest yield and harvest index. In addition, compared to the recommended dose of prilled urea, the deep placement of USG increased NUE by 13%, agronomic N efficiency by 20%, and recovery N use efficiency by 19%. This suggests the rate of N application could be reduced by up to 8% without impacting yield by using deep placement of USG instead of prilled urea. The cost–benefit ratio was higher for the deep placement of USG than all other treatments. Biochar with the recommended dose of prilled urea also showed good results in terms of growth, yield, and NUE (41.8, 43.0, and 41.7, respectively, during three sequential years), but the extra cost of the biochar reduced the cost–benefit ratio. These findings suggest that the deep placement of USG is the best option for improving the yield of rice while also improving N use efficiency. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

16 pages, 13046 KiB  
Article
Tobacco Smoke Condensate Induces Morphologic Changes in Human Papillomavirus-Positive Cervical Epithelial Cells Consistent with Epithelial to Mesenchymal Transition (EMT) with Activation of Receptor Tyrosine Kinases and Regulation of TGFB
by Zaniya A. Mark, Linda Yu, Lysandra Castro, Xiaohua Gao, Noelle R. Rodriguez, Deloris Sutton, Erica Scappini, Charles J. Tucker, Rob Wine, Yitang Yan, Evangeline Motley and Darlene Dixon
Int. J. Mol. Sci. 2024, 25(9), 4902; https://doi.org/10.3390/ijms25094902 - 30 Apr 2024
Cited by 2 | Viewed by 1991
Abstract
High-risk human papillomavirus (HR-HPV; HPV-16) and cigarette smoking are associated with cervical cancer (CC); however, the underlying mechanism(s) remain unclear. Additionally, the carcinogenic components of tobacco have been found in the cervical mucus of women smokers. Here, we determined the effects of cigarette [...] Read more.
High-risk human papillomavirus (HR-HPV; HPV-16) and cigarette smoking are associated with cervical cancer (CC); however, the underlying mechanism(s) remain unclear. Additionally, the carcinogenic components of tobacco have been found in the cervical mucus of women smokers. Here, we determined the effects of cigarette smoke condensate (CSC; 3R4F) on human ectocervical cells (HPV-16 Ect/E6E7) exposed to CSC at various concentrations (10−6–100 μg/mL). We found CSC (10−3 or 10 μg/mL)-induced proliferation, enhanced migration, and histologic and electron microscopic changes consistent with EMT in ectocervical cells with a significant reduction in E-cadherin and an increase in the vimentin expression compared to controls at 72 h. There was increased phosphorylation of receptor tyrosine kinases (RTKs), including Eph receptors, FGFR, PDGFRA/B, and DDR2, with downstream Ras/MAPK/ERK1/2 activation and upregulation of common EMT-related genes, TGFB SNAI2, PDGFRB, and SMAD2. Our study demonstrated that CSC induces EMT in ectocervical cells with the upregulation of EMT-related genes, expression of protein biomarkers, and activation of RTKs that regulate TGFB expression, and other EMT-related genes. Understanding the molecular pathways and environmental factors that initiate EMT in ectocervical cells will help delineate molecular targets for intervention and define the role of EMT in the initiation and progression of cervical intraepithelial neoplasia and CC. Full article
Show Figures

Figure 1

13 pages, 1000 KiB  
Article
Syncope Diagnosis at Referral to a Tertiary Syncope Unit: An in-Depth Analysis of the FAST II
by Jelle S. Y. de Jong, Steven van Zanten, Roland D. Thijs, Ineke A. van Rossum, Mark P. M. Harms, Joris R. de Groot, Richard Sutton and Frederik J. de Lange
J. Clin. Med. 2023, 12(7), 2562; https://doi.org/10.3390/jcm12072562 - 29 Mar 2023
Cited by 8 | Viewed by 2620
Abstract
Objective: A substantial number of patients with a transient loss of consciousness (T-LOC) are referred to a tertiary syncope unit without a diagnosis. This study investigates the final diagnoses reached in patients who, on referral, were undiagnosed or inaccurately diagnosed in secondary care. [...] Read more.
Objective: A substantial number of patients with a transient loss of consciousness (T-LOC) are referred to a tertiary syncope unit without a diagnosis. This study investigates the final diagnoses reached in patients who, on referral, were undiagnosed or inaccurately diagnosed in secondary care. Methods: This study is an in-depth analysis of the recently published Fainting Assessment Study II, a prospective cohort study in a tertiary syncope unit. The diagnosis at the tertiary syncope unit was established after history taking (phase 1), following autonomic function tests (phase 2), and confirming after critical follow-up of 1.5–2 years, with the adjudicated diagnosis (phase 3) by a multidisciplinary committee. Diagnoses suggested by the referring physician were considered the phase 0 diagnosis. We determined the accuracy of the phase 0 diagnosis by comparing this with the phase 3 diagnosis. Results: 51% (134/264) of patients had no diagnosis upon referral (phase 0), the remaining 49% (130/264) carried a diagnosis, but 80% (104/130) considered their condition unexplained. Of the patients undiagnosed at referral, three major causes of T-LOC were revealed: reflex syncope (69%), initial orthostatic hypotension (20%) and psychogenic pseudosyncope (13%) (sum > 100% due to cases with multiple causes). Referral diagnoses were either inaccurate or incomplete in 65% of the patients and were mainly altered at tertiary care assessment to reflex syncope, initial orthostatic hypotension or psychogenic pseudosyncope. A diagnosis of cardiac syncope at referral proved wrong in 17/18 patients. Conclusions: Syncope patients diagnosed or undiagnosed in primary and secondary care and referred to a syncope unit mostly suffer from reflex syncope, initial orthostatic hypotension or psychogenic pseudosyncope. These causes of T-LOC do not necessarily require ancillary tests, but can be diagnosed by careful history-taking. Besides access to a network of specialized syncope units, simple interventions, such as guideline-based structured evaluation, proper risk-stratification and critical follow-up may reduce diagnostic delay and improve diagnostic accuracy for syncope. Full article
(This article belongs to the Section Epidemiology & Public Health)
Show Figures

Figure 1

10 pages, 1103 KiB  
Article
Covalent DNA Binding Is Essential for Gram-Negative Antibacterial Activity of Broad Spectrum Pyrrolobenzodiazepines
by Pietro Picconi, Charlotte K. Hind, J. Mark Sutton and Khondaker Miraz Rahman
Antibiotics 2022, 11(12), 1770; https://doi.org/10.3390/antibiotics11121770 - 7 Dec 2022
Cited by 1 | Viewed by 1998
Abstract
It is urgent to find new antibiotic classes against multidrug-resistant bacteria as the rate of discovery of new classes of antibiotics has been very slow in the last 50 years. Recently, pyrrolobenzodiazepines (PBDs) with a C8-linked aliphatic-heterocycle have been identified as a new [...] Read more.
It is urgent to find new antibiotic classes against multidrug-resistant bacteria as the rate of discovery of new classes of antibiotics has been very slow in the last 50 years. Recently, pyrrolobenzodiazepines (PBDs) with a C8-linked aliphatic-heterocycle have been identified as a new broad-spectrum antibiotic class with activity against Gram-negative bacteria. The active imine moiety of the reported lead pyrrolobenzodiazepine compounds was replaced with amide to obtain the non-DNA binding and noncytotoxic dilactam analogues to understand the structure-activity relationship further and improve the safety potential of this class. The synthesised compounds were tested against panels of multidrug-resistant Gram-positive and Gram-negative bacteria, including WHO priority pathogens. Minimum inhibitory concentrations for the dilactam analogues ranged from 4 to 32 mg/L for MDR Gram-positive bacteria, compared to 0.03 to 2 mg/L for the corresponding imine analogues. At the same time, they were found to be inactive against MDR Gram-negative bacteria, with a MIC > 32 mg/L, compared to a MIC of 0.5 to 32 mg/L for imine analogues. A molecular modelling study suggests that the lack of imine functionality also affects the interaction of PBDs with DNA gyrase. This study suggests that the presence of N10-C11 imine moiety is crucial for the broad-spectrum activity of pyrrolobenzodiazepines. Full article
Show Figures

Figure 1

31 pages, 36810 KiB  
Article
High-Resolution Regional Digital Elevation Models and Derived Products from MESSENGER MDIS Images
by Madeleine R. Manheim, Megan R. Henriksen, Mark S. Robinson, Hannah R. Kerner, Bradley A. Karas, Kris J. Becker, Matthew Chojnacki, Sarah S. Sutton and David T. Blewett
Remote Sens. 2022, 14(15), 3564; https://doi.org/10.3390/rs14153564 - 25 Jul 2022
Cited by 2 | Viewed by 3006
Abstract
The Mercury Dual Imaging System (MDIS) on the Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has provided global images of Mercury’s surface. A subset of off-nadir observations acquired at different times resulted in near-global stereo coverage and enabled the creation of [...] Read more.
The Mercury Dual Imaging System (MDIS) on the Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has provided global images of Mercury’s surface. A subset of off-nadir observations acquired at different times resulted in near-global stereo coverage and enabled the creation of local area digital elevation models (DEMs). We derived fifty-seven DEMs covering nine sites of scientific interest and tied each to a geodetic reference derived from Mercury Laser Altimeter (MLA) profiles. DEMs created as part of this study have pixel scales ranging from 78 m/px to 500 m/px, and have vertical precisions less than the DEM pixel scale. These DEMs allow detailed characterizations of key Mercurian features. We present a preliminary examination of small features called “hollows” in three DEM sites. Depth measurements from the new DEMs are consistent with previous shadow and stereo measurements. Full article
(This article belongs to the Special Issue Planetary Geologic Mapping and Remote Sensing)
Show Figures

Figure 1

25 pages, 18236 KiB  
Article
Genomic Diversity of Bacteriophages Infecting the Genus Acinetobacter
by Hugo Oliveira, Rita Domingues, Benjamin Evans, J. Mark Sutton, Evelien M. Adriaenssens and Dann Turner
Viruses 2022, 14(2), 181; https://doi.org/10.3390/v14020181 - 19 Jan 2022
Cited by 21 | Viewed by 5664
Abstract
The number of sequenced Acinetobacter phage genomes in the International Nucleotide Sequence Database Collaboration has increased significantly in recent years, from 37 in 2017 to a total of 139 as of January 2021 with genome sizes ranging from 31 to 378 kb. Here, [...] Read more.
The number of sequenced Acinetobacter phage genomes in the International Nucleotide Sequence Database Collaboration has increased significantly in recent years, from 37 in 2017 to a total of 139 as of January 2021 with genome sizes ranging from 31 to 378 kb. Here, we explored the genetic diversity of the Acinetobacter phages using comparative genomics approaches that included assessment of nucleotide similarity, shared gene content, single gene phylogeny, and the network-based classification tool vConTACT2. Phages infecting Acinetobacter sp. are genetically diverse and can be grouped into 8 clusters (subfamilies) and 46 sub-clusters (genera), of which 8 represent genomic singletons (additional genera). We propose the creation of five new subfamilies and suggest a reorganisation of the genus Obolenskvirus. These results provide an updated view of the viruses infecting Acinetobacter species, providing insights into their diversity. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

14 pages, 1729 KiB  
Article
Antimicrobial Constituents from Machaerium Pers.: Inhibitory Activities and Synergism of Machaeriols and Machaeridiols against Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus faecium, and Permeabilized Gram-Negative Pathogens
by Ilias Muhammad, Melissa R. Jacob, Mohamed A. Ibrahim, Vijayasankar Raman, Mallika Kumarihamy, Mei Wang, Taha Al-Adhami, Charlotte Hind, Melanie Clifford, Bethany Martin, Jianping Zhao, J. Mark Sutton and Khondaker Miraz Rahman
Molecules 2020, 25(24), 6000; https://doi.org/10.3390/molecules25246000 - 18 Dec 2020
Cited by 9 | Viewed by 3354
Abstract
Two new epimeric bibenzylated monoterpenes machaerifurogerol (1a) and 5-epi-machaerifurogerol (1b), and four known isoflavonoids (+)-vestitol (2), 7-O-methylvestitol (3), (+)-medicarpin (4), and 3,8-dihydroxy-9-methoxypterocarpan (5) were isolated from Machaerium [...] Read more.
Two new epimeric bibenzylated monoterpenes machaerifurogerol (1a) and 5-epi-machaerifurogerol (1b), and four known isoflavonoids (+)-vestitol (2), 7-O-methylvestitol (3), (+)-medicarpin (4), and 3,8-dihydroxy-9-methoxypterocarpan (5) were isolated from Machaerium Pers. This plant was previously assigned as Machaerium multiflorum Spruce, from which machaeriols A-D (69) and machaeridiols A-C (1012) were reported, and all were then re-isolated, except the minor compound 9, for a comprehensive antimicrobial activity evaluation. Structures of the isolated compounds were determined by full NMR and mass spectroscopic data. Among the isolated compounds, the mixture 10 + 11 was the most active with an MIC value of 1.25 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA) strains BAA 1696, −1708, −1717, −33591, and vancomycin-resistant Enterococcus faecium (VRE 700221) and E. faecalis (VRE 51299) and vancomycin-sensitive E. faecalis (VSE 29212). Compounds 68 and 1012 were found to be more potent against MRSA 1708, and 6, 11, and 12 against VRE 700221, than the drug control ciprofloxacin and vancomycin. A combination study using an in vitro Checkerboard method was carried out for machaeriols (7 or 8) and machaeridiols (11 or 12), which exhibited a strong synergistic activity of 12 + 8 (MIC 0.156 and 0.625 µg/mL), with >32- and >8-fold reduction of MIC’s, compared to 12, against MRSA 1708 and −1717, respectively. In the presence of sub-inhibitory concentrations on polymyxin B nonapeptide (PMBN), compounds 10 + 11, 11, 12, and 8 showed activity in the range of 0.5–8 µg/mL for two strains of Acinetobacter baumannii, 2–16 µg/mL against Pseudomonas aeruginosa PAO1, and 2 µg/mL against Escherichia coli NCTC 12923, but were inactive (MIC > 64 µg/mL) against the two isolates of Klebsiella pneumoniae. Full article
Show Figures

Graphical abstract

19 pages, 1771 KiB  
Review
Overcoming Intrinsic and Acquired Resistance Mechanisms Associated with the Cell Wall of Gram-Negative Bacteria
by Rachael E. Impey, Daniel A. Hawkins, J. Mark Sutton and Tatiana P. Soares da Costa
Antibiotics 2020, 9(9), 623; https://doi.org/10.3390/antibiotics9090623 - 19 Sep 2020
Cited by 66 | Viewed by 12151
Abstract
The global increase in multi-drug-resistant bacteria is severely impacting our ability to effectively treat common infections. For Gram-negative bacteria, their intrinsic and acquired resistance mechanisms are heightened by their unique cell wall structure. The cell wall, while being a target of some antibiotics, [...] Read more.
The global increase in multi-drug-resistant bacteria is severely impacting our ability to effectively treat common infections. For Gram-negative bacteria, their intrinsic and acquired resistance mechanisms are heightened by their unique cell wall structure. The cell wall, while being a target of some antibiotics, represents a barrier due to the inability of most antibacterial compounds to traverse and reach their intended target. This means that its composition and resulting mechanisms of resistance must be considered when developing new therapies. Here, we discuss potential antibiotic targets within the most well-characterised resistance mechanisms associated with the cell wall in Gram-negative bacteria, including the outer membrane structure, porins and efflux pumps. We also provide a timely update on the current progress of inhibitor development in these areas. Such compounds could represent new avenues for drug discovery as well as adjuvant therapy to help us overcome antibiotic resistance. Full article
(This article belongs to the Special Issue Novel Targets and Mechanisms in Antimicrobial Drug Discovery)
Show Figures

Figure 1

19 pages, 2230 KiB  
Review
Effectiveness of Efflux Pump Inhibitors as Biofilm Disruptors and Resistance Breakers in Gram-Negative (ESKAPEE) Bacteria
by Akif Reza, J. Mark Sutton and Khondaker Miraz Rahman
Antibiotics 2019, 8(4), 229; https://doi.org/10.3390/antibiotics8040229 - 19 Nov 2019
Cited by 92 | Viewed by 13973
Abstract
Antibiotic resistance represents a significant threat to the modern healthcare provision. The ESKAPEE pathogens (Enterococcus faecium., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli), in particular, have proven to be especially [...] Read more.
Antibiotic resistance represents a significant threat to the modern healthcare provision. The ESKAPEE pathogens (Enterococcus faecium., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli), in particular, have proven to be especially challenging to treat, due to their intrinsic and acquired ability to rapidly develop resistance mechanisms in response to environmental threats. The development of biofilm has been characterised as an essential contributing factor towards antimicrobial-resistance and tolerance. Several studies have implicated the involvement of efflux pumps in antibiotic resistance, both directly, via drug extrusion and indirectly, through the formation of biofilm. As a result, the underlying mechanism of these pumps has attracted considerable interest due to the potential of targeting these protein structures and developing novel adjunct therapies. Subsequent investigations have revealed the ability of efflux pump-inhibitors (EPIs) to block drug-extrusion and disrupt biofilm formation, thereby, potentiating antibiotics and reversing resistance of pathogen towards them. This review will discuss the potential of EPIs as a possible solution to antimicrobial resistance, examining different challenges to the design of these compounds, with an emphasis on Gram-negative ESKAPEE pathogens. Full article
(This article belongs to the Section Novel Antimicrobial Agents)
Show Figures

Figure 1

25 pages, 9117 KiB  
Article
Comparative Analysis of 37 Acinetobacter Bacteriophages
by Dann Turner, Hans-Wolfgang Ackermann, Andrew M. Kropinski, Rob Lavigne, J. Mark Sutton and Darren M. Reynolds
Viruses 2018, 10(1), 5; https://doi.org/10.3390/v10010005 - 24 Dec 2017
Cited by 35 | Viewed by 12501
Abstract
Members of the genus Acinetobacter are ubiquitous in the environment and the multiple-drug resistant species A. baumannii is of significant clinical concern. This clinical relevance is currently driving research on bacterial viruses infecting A. baumannii, in an effort to implement phage therapy [...] Read more.
Members of the genus Acinetobacter are ubiquitous in the environment and the multiple-drug resistant species A. baumannii is of significant clinical concern. This clinical relevance is currently driving research on bacterial viruses infecting A. baumannii, in an effort to implement phage therapy and phage-derived antimicrobials. Initially, a total of 42 Acinetobacter phage genome sequences were available in the international nucleotide sequence databases, corresponding to a total of 2.87 Mbp of sequence information and representing all three families of the order Caudovirales and a single member of the Leviviridae. A comparative bioinformatics analysis of 37 Acinetobacter phages revealed that they form six discrete clusters and two singletons based on genomic organisation and nucleotide sequence identity. The assignment of these phages to clusters was further supported by proteomic relationships established using OrthoMCL. The 4067 proteins encoded by the 37 phage genomes formed 737 groups and 974 orphans. Notably, over half of the proteins encoded by the Acinetobacter phages are of unknown function. The comparative analysis and clustering presented enables an updated taxonomic framing of these clades. Full article
(This article belongs to the Special Issue Bacteriophage Genomes and Genomics: News from the Wild)
Show Figures

Graphical abstract

12 pages, 3634 KiB  
Article
A Programmable Digital Microfluidic Assay for the Simultaneous Detection of Multiple Anti-Microbial Resistance Genes
by Sumit Kalsi, Samuel L. Sellars, Carrie Turner, J. Mark Sutton and Hywel Morgan
Micromachines 2017, 8(4), 111; https://doi.org/10.3390/mi8040111 - 1 Apr 2017
Cited by 39 | Viewed by 8789
Abstract
The rapid emergence of antimicrobial resistant bacteria requires the development of new diagnostic tests. Nucleic acid-based assays determine antimicrobial susceptibility by detecting genes that encode for the resistance. In this study, we demonstrate rapid and simultaneous detection of three genes that confer resistance [...] Read more.
The rapid emergence of antimicrobial resistant bacteria requires the development of new diagnostic tests. Nucleic acid-based assays determine antimicrobial susceptibility by detecting genes that encode for the resistance. In this study, we demonstrate rapid and simultaneous detection of three genes that confer resistance in bacteria to extended spectrum β-lactam and carbapenem antibiotics; CTX-M-15, KPC and NDM-1. The assay uses isothermal DNA amplification (recombinase polymerase amplification, RPA) implemented on a programmable digital microfluidics (DMF) platform. Automated dispensing protocols are used to simultaneously manipulate 45 droplets of nL volume containing sample DNA, reagents, and controls. The droplets are processed and mixed under electronic control on the DMF devices with positive amplification measured by fluorescence. The assay on these devices is significantly improved with a Time to Positivity (TTP) half that of the benchtop assay. Full article
(This article belongs to the Special Issue Application of Microfluidic Methodology for the Analysis of DNA)
Show Figures

Figure 1

Back to TopTop