Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Gijsje Koenderink

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 34963 KiB  
Article
Matrix Stiffness Affects Spheroid Invasion, Collagen Remodeling, and Effective Reach of Stress into ECM
by Klara Beslmüller, Rick Rodrigues de Mercado, Gijsje H. Koenderink, Erik H. J. Danen and Thomas Schmidt
Organoids 2025, 4(2), 11; https://doi.org/10.3390/organoids4020011 - 3 Jun 2025
Cited by 1 | Viewed by 904
Abstract
The extracellular matrix (ECM) provides structural support to cells, thereby forming a functional tissue. In cancer, the growth of the tumor creates internal mechanical stress, which, together with the remodeling activity of tumor cells and fibroblasts, alters the ECM structure, leading to an [...] Read more.
The extracellular matrix (ECM) provides structural support to cells, thereby forming a functional tissue. In cancer, the growth of the tumor creates internal mechanical stress, which, together with the remodeling activity of tumor cells and fibroblasts, alters the ECM structure, leading to an increased stiffness of the pathological ECM. The enhanced ECM stiffness, in turn, stimulates tumor growth and activates tumor-promoting fibroblasts and tumor cell migration, leading to metastasis and increased therapy resistance. While the relationship between matrix stiffness and migration has been studied before, their connection to internal tumor stress remains unresolved. Here we used 3D ECM-embedded spheroids and hydrogel particle stress sensors to quantify and correlate internal tumor spheroid pressure, ECM stiffness, ECM remodeling, and tumor cell migration. We note that 4T1 breast cancer spheroids and SV80 fibroblast spheroids showed increased invasion—described by area, complexity, number of branches, and branch area—in a stiffer, cross-linked ECM. On the other hand, changing ECM stiffness only minimally changed the radial alignment of fibers but highly changed the amount of fibers. For both cell types, the pressure measured in spheroids gradually decreased as the distance into the ECM increased. For 4T1 spheroids, increased ECM stiffness resulted in a further reach of mechanical stress into the ECM, which, together with the invasive phenotype, was reduced by inhibition of ROCK-mediated contractility. By contrast, such correlation between ECM stiffness and stress-reach was not observed for SV80 spheroids. Our findings connect ECM stiffness with tumor invasion, ECM remodeling, and the reach of tumor-induced mechanical stress into the ECM. Such mechanical connections between tumor and ECM are expected to drive early steps in cancer metastasis. Full article
Show Figures

Figure 1

15 pages, 2384 KiB  
Article
Effects of Diabetes Mellitus on Fibrin Clot Structure and Mechanics in a Model of Acute Neutrophil Extracellular Traps (NETs) Formation
by Judith J. de Vries, Tamara Hoppenbrouwers, Cristina Martinez-Torres, Rezin Majied, Behiye Özcan, Mandy van Hoek, Frank W.G. Leebeek, Dingeman C. Rijken, Gijsje H. Koenderink and Moniek P.M. de Maat
Int. J. Mol. Sci. 2020, 21(19), 7107; https://doi.org/10.3390/ijms21197107 - 26 Sep 2020
Cited by 19 | Viewed by 3624
Abstract
Subjects with diabetes mellitus (DM) have an increased risk of arterial thrombosis, to which changes in clot structure and mechanics may contribute. Another contributing factor might be an increased formation of neutrophil extracellular traps (NETs) in DM. NETs are mainly formed during the [...] Read more.
Subjects with diabetes mellitus (DM) have an increased risk of arterial thrombosis, to which changes in clot structure and mechanics may contribute. Another contributing factor might be an increased formation of neutrophil extracellular traps (NETs) in DM. NETs are mainly formed during the acute phase of disease and form a network within the fibrin matrix, thereby influencing clot properties. Previous research has shown separate effects of NETs and DM on clot properties, therefore our aim was to study how DM affects clot properties in a model resembling an acute phase of disease with NETs formation. Clots were prepared from citrated plasma from subjects with and without DM with the addition of NETs, induced in neutrophils by S. aureus bacteria or phorbol myristate acetate (PMA). Structural parameters were measured using scanning electron microscopy, mechanical properties using rheology, and sensitivity to lysis using a fluorescence-based fibrinolysis assay. Plasma clots from subjects with DM had significantly thicker fibers and fewer pores and branch points than clots from subjects without DM. In addition, fibrinolysis was significantly slower, while mechanical properties were similar between both groups. In conclusion, in a model of acute NETs formation, DM plasma shows prothrombotic effects on fibrin clots. Full article
(This article belongs to the Special Issue Fibrinogen/Fibrin, Factor XIII and Fibrinolysis in Diseases)
Show Figures

Figure 1

41 pages, 2247 KiB  
Review
Lipid Nanotechnology
by Samaneh Mashaghi, Tayebeh Jadidi, Gijsje Koenderink and Alireza Mashaghi
Int. J. Mol. Sci. 2013, 14(2), 4242-4282; https://doi.org/10.3390/ijms14024242 - 21 Feb 2013
Cited by 195 | Viewed by 43024
Abstract
Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of [...] Read more.
Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology. Full article
(This article belongs to the Special Issue Phospholipids: Molecular Sciences 2012)
Show Figures

Graphical abstract

Back to TopTop