Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = Edoardo Magnone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1540 KB  
Article
Polymeric Membrane Contactors for CO2 Separation: A Systematic Literature Analysis of the Impact of Absorbent Temperature
by Edoardo Magnone, Min Chang Shin and Jung Hoon Park
Polymers 2025, 17(10), 1387; https://doi.org/10.3390/polym17101387 - 18 May 2025
Viewed by 933
Abstract
Global warming, driven significantly by carbon dioxide (CO2) emissions, necessitates immediate climate action. Consequently, CO2 capture is essential for mitigating carbon output from industrial and power generation processes. This study investigates the effect of absorbent temperature on CO2 separation [...] Read more.
Global warming, driven significantly by carbon dioxide (CO2) emissions, necessitates immediate climate action. Consequently, CO2 capture is essential for mitigating carbon output from industrial and power generation processes. This study investigates the effect of absorbent temperature on CO2 separation performance using gas–liquid polymeric hollow fiber membrane (HFM) contactors. It summarizes the relationship between liquid-phase temperature and CO2 capture efficiency across various physical and chemical absorption processes. Twelve relevant studies (nine experimental, three mathematical), providing a comprehensive database of 104 individual measurements, were rigorously analyzed. Liquid-phase temperature significantly influences CO2 separation performance in HFM contactors. In particular, the present analysis reveals that, overall, for every 10 °C temperature increase, physical absorption performance decreases by approximately 3%, while chemical absorption performance improves by 3%, regardless of other parameters. This empirical law was confirmed by direct comparisons with additional experimental results. Strategies for further development of these processes are also proposed. Full article
(This article belongs to the Special Issue Polymer Materials for Environmental Applications)
Show Figures

Graphical abstract

15 pages, 4823 KB  
Article
S- and N-Co-Doped TiO2-Coated Al2O3 Hollow Fiber Membrane for Photocatalytic Degradation of Gaseous Ammonia
by Jae Yeon Hwang, Edoardo Magnone, Jeong In Lee, Xuelong Zhuang, Min Chang Shin and Jung Hoon Park
Membranes 2022, 12(11), 1101; https://doi.org/10.3390/membranes12111101 - 4 Nov 2022
Cited by 5 | Viewed by 3246
Abstract
This study successfully prepared and tested sulfur- and nitrogen-co-doped TiO2-coated α-Al2O3 (S,N-doped TiO2/Al2O3) hollow fiber (HF) membranes for efficient photocatalytic degradation of gaseous ammonia (NH3). Thiourea was used as a [...] Read more.
This study successfully prepared and tested sulfur- and nitrogen-co-doped TiO2-coated α-Al2O3 (S,N-doped TiO2/Al2O3) hollow fiber (HF) membranes for efficient photocatalytic degradation of gaseous ammonia (NH3). Thiourea was used as a sulfur- and nitrogen-doping source to produce a S,N-doped TiO2 photocatalyst powder. For comparative purposes, undoped TiO2 powder was also synthesized. Through the application of a phase-inversion technique combined with high-temperature sintering, hollow fibers composed of α-Al2O3 were developed. Undoped TiO2 and S,N-doped TiO2 photocatalyst powders were coated on the α-Al2O3 HF surface to obtain undoped TiO2/Al2O3 and S,N-doped TiO2/Al2O3 HF membranes, respectively. All prepared samples were characterized using XRD, TEM, XPS, UV-Vis, SEM, BET, FT-IR, and EDS. S and N dopants were confirmed using XPS and UV-Vis spectra. The crystal phase of the undoped TiO2 and S,N-doped TiO2 photocatalysts was a pure anatase phase. A portable air purifier photocatalytic filter device was developed and tested for the first time to decrease the amount of indoor NH3 pollution under the limits of the lachrymatory threshold. The device, which was made up of 36 S,N-doped TiO2/Al2O3 HF membranes, took only 15–20 min to reduce the level of NH3 in a test chamber from 50 ppm to around 5 ppm, confirming the remarkable performance regarding the photocatalytic degradation of gaseous NH3. Full article
Show Figures

Graphical abstract

16 pages, 3647 KB  
Article
Novel TiO2/GO-Al2O3 Hollow Fiber Nanofiltration Membrane for Desalination and Lignin Recovery
by Xuelong Zhuang, Edoardo Magnone, Min Chang Shin, Jeong In Lee, Jae Yeon Hwang, Young Chan Choi and Jung Hoon Park
Membranes 2022, 12(10), 950; https://doi.org/10.3390/membranes12100950 - 28 Sep 2022
Cited by 11 | Viewed by 3022
Abstract
Due to its greater physical–chemical stability, ceramic nanofiltration (NF) membranes were used in a number of industrial applications. In this study, a novel NF membrane was prepared by co-depositing a titanium dioxide (TiO2) and graphene oxide (GO) composite layer directly onto [...] Read more.
Due to its greater physical–chemical stability, ceramic nanofiltration (NF) membranes were used in a number of industrial applications. In this study, a novel NF membrane was prepared by co-depositing a titanium dioxide (TiO2) and graphene oxide (GO) composite layer directly onto a porous α-Al2O3 hollow fiber (HF) support. An 8 µm-thick TiO2/GO layer was deposited to the surface of α-Al2O3 HF support by vacuum deposition method to produce advanced TiO2/GO-Al2O3 HF NF membrane. Scanning electron microscope (SEM) micrographs, energy dispersive spectrometer (EDS), X-ray powder diffraction (XRD), thermogravimetric analyzer (TGA), porosity, 3-point bending strength, zeta potential analysis, and hydrophilic properties by water contact angle are used for TiO2/GO-Al2O3 HF NF membrane characterization. The results show that the developed membrane’s MWCO ranged from 600 to 800 Da. The water flux, rejection of lignin, and sodium ions were 5.6 L/m2 h·bar, ~92.1%, and ~5.5%, respectively. In a five-day NF process, the TiO2/GO-Al2O3 HF NF membrane exhibits good lignin permeation stability of about 14.5 L/m2 h. Full article
Show Figures

Figure 1

23 pages, 4047 KB  
Article
The ABA-LANCL1/2 Hormone-Receptors System Protects H9c2 Cardiomyocytes from Hypoxia-Induced Mitochondrial Injury via an AMPK- and NO-Mediated Mechanism
by Sonia Spinelli, Lucrezia Guida, Tiziana Vigliarolo, Mario Passalacqua, Giulia Begani, Mirko Magnone, Laura Sturla, Andrea Benzi, Pietro Ameri, Edoardo Lazzarini, Claudia Bearzi, Roberto Rizzi and Elena Zocchi
Cells 2022, 11(18), 2888; https://doi.org/10.3390/cells11182888 - 15 Sep 2022
Cited by 21 | Viewed by 4694
Abstract
Abscisic acid (ABA) regulates plant responses to stress, partly via NO. In mammals, ABA stimulates NO production by innate immune cells and keratinocytes, glucose uptake and mitochondrial respiration by skeletal myocytes and improves blood glucose homeostasis through its receptors LANCL1 and LANCL2. We [...] Read more.
Abscisic acid (ABA) regulates plant responses to stress, partly via NO. In mammals, ABA stimulates NO production by innate immune cells and keratinocytes, glucose uptake and mitochondrial respiration by skeletal myocytes and improves blood glucose homeostasis through its receptors LANCL1 and LANCL2. We hypothesized a role for the ABA-LANCL1/2 system in cardiomyocyte protection from hypoxia via NO. The effect of ABA and of the silencing or overexpression of LANCL1 and LANCL2 were investigated in H9c2 rat cardiomyoblasts under normoxia or hypoxia/reoxygenation. In H9c2, hypoxia induced ABA release, and ABA stimulated NO production. ABA increased the survival of H9c2 to hypoxia, and L-NAME, an inhibitor of NO synthase (NOS), abrogated this effect. ABA also increased glucose uptake and NADPH levels and increased phosphorylation of Akt, AMPK and eNOS. Overexpression or silencing of LANCL1/2 significantly increased or decreased, respectively, transcription, expression and phosphorylation of AMPK, Akt and eNOS; transcription of NAMPT, Sirt1 and the arginine transporter. The mitochondrial proton gradient and cell vitality increased in LANCL1/2-overexpressing vs. -silenced cells after hypoxia/reoxygenation, and L-NAME abrogated this difference. These results implicate the ABA-LANCL1/2 hormone-receptor system in NO-mediated cardiomyocyte protection against hypoxia. Full article
Show Figures

Graphical abstract

13 pages, 5269 KB  
Article
Al2O3-Based Hollow Fiber Membranes Functionalized by Nitrogen-Doped Titanium Dioxide for Photocatalytic Degradation of Ammonia Gas
by Edoardo Magnone, Jae Yeon Hwang, Min Chang Shin, Xuelong Zhuang, Jeong In Lee and Jung Hoon Park
Membranes 2022, 12(7), 693; https://doi.org/10.3390/membranes12070693 - 6 Jul 2022
Cited by 12 | Viewed by 2764
Abstract
In recent years, reactive ammonia (NH3) has emerged as a major source of indoor air pollution. In this study, Al2O3-based hollow fiber membranes functionalized with nitrogen-doped titanium dioxide were produced and successfully applied for efficient heterogeneous photocatalytic [...] Read more.
In recent years, reactive ammonia (NH3) has emerged as a major source of indoor air pollution. In this study, Al2O3-based hollow fiber membranes functionalized with nitrogen-doped titanium dioxide were produced and successfully applied for efficient heterogeneous photocatalytic NH3 gas degradation. Al2O3 hollow fiber membranes were prepared using the phase inversion process. A dip-coating technique was used to deposit titanium dioxide (TiO2) and nitrogen-doped titanium dioxide (N-TiO2) thin films on well-cleaned Al2O3-based hollow fiber membranes. All heterogeneous photocatalytic degradation tests of NH3 gas were performed with both UV and visible light irradiation at room temperature. The nitrogen doping effects on the NH3 heterogeneous photocatalytic degradation capacity of TiO2 were investigated, and the effect of the number of membranes (30, 36, 42, and 48 membranes) of the prototype lab-scale photocatalytic membrane reactor, with a modular design, on the performances in different light conditions was also elucidated. Moreover, under ultraviolet and visible light, the initial concentration of gaseous NH3 was reduced to zero after only fifteen minutes in a prototype lab-scale stage with a photocatalytic membrane reactor based on an N-TiO2 photocatalyst. The number of Al2O3-based hollow fiber membranes functionalized with N-TiO2 photocatalysts increases the capacity for NH3 heterogeneous photocatalytic degradation. Full article
(This article belongs to the Special Issue Advance in Photocatalytic Membrane Reactor)
Show Figures

Graphical abstract

21 pages, 631 KB  
Article
Analysis of Scholarly Communication Activities in Buddhism and Buddhist Studies
by Edoardo Magnone
Information 2015, 6(2), 162-182; https://doi.org/10.3390/info6020162 - 4 May 2015
Cited by 1 | Viewed by 6374
Abstract
There is little knowledge regarding the exchange of academic information on religious contexts. The objective of this informational study was to perform an overall analysis of all Buddhism-related communications collected in the Web of Science (WoS) from 1993 to 2011. The studied informational [...] Read more.
There is little knowledge regarding the exchange of academic information on religious contexts. The objective of this informational study was to perform an overall analysis of all Buddhism-related communications collected in the Web of Science (WoS) from 1993 to 2011. The studied informational parameters include the growth in number of the scholarly communications, as well as the language-, document-, subject category-, source-, country-, and organization-wise distribution of the communications. A total of 5407 scholarly communications in this field of study were published in the selected time range. The most preferred WoS subject category was Asian Studies with 1773 communications (22.81%), followed by Religion with 1425 communications (18.33%) and Philosophy with 680 communications (8.75%). The journal with the highest mean number of citations is Numen: International Review for the History of Religions—with 2.09 citations in average per communication. The United States was the top productive country with 2159 communications (50%), where Harvard University topped the list of organization with 85 communications (12%). Full article
Show Figures

Graphical abstract

20 pages, 172 KB  
Review
An Overview on the South Korean Scientific Production in the Field of Chemistry (1993–2012)
by Edoardo Magnone
Information 2014, 5(2), 285-304; https://doi.org/10.3390/info5020285 - 6 May 2014
Cited by 1 | Viewed by 11594
Abstract
The present review seeks to take stock of the South Korean publication activity on the field of chemistry by analyzing systematically all chemistry-related scholarly communications collected in the Web of Science (WOS) database published by at least one Korean author or Korean institute- [...] Read more.
The present review seeks to take stock of the South Korean publication activity on the field of chemistry by analyzing systematically all chemistry-related scholarly communications collected in the Web of Science (WOS) database published by at least one Korean author or Korean institute- or university-affiliated author from 1993 to 2012. The studied parameters included the growth in number of the communications, as well as the language-, document-, category-, source-, organization-, and collaboration-wise distribution of the South Korean communications. A total of 5660 communications on chemistry were found to be published by South Korean researchers during the aforementioned period of time, and South Korea was the 15th country (1.77%) in the world in terms of informational communication activity in chemistry. Full article
(This article belongs to the Section Information and Communications Technology)
Show Figures

Graphical abstract

19 pages, 391 KB  
Article
A General Overview of Scientific Production in China, Japan and Korea of the Water-Gas Shift (WGS) Process
by Edoardo Magnone
Information 2012, 3(4), 771-789; https://doi.org/10.3390/info3040771 - 29 Nov 2012
Cited by 2 | Viewed by 7787
Abstract
In today’s economy, one of the most important national indicators of economic growth performance is the country’s ability to produce new technology—and use it responsibly and efficiently—for environmental protection or energy conservation, production and consumption in agreement with international standards. The purpose of [...] Read more.
In today’s economy, one of the most important national indicators of economic growth performance is the country’s ability to produce new technology—and use it responsibly and efficiently—for environmental protection or energy conservation, production and consumption in agreement with international standards. The purpose of this study is to identify the Research and Development (R&D) capability in the area of environmentally friendly technologies in China, Japan and Korea over the last twenty years. As the field is very wide, Water-Gas Shift (WGS) reaction technologies were taken as a case study for the purpose of this article. During 1990–2011 a total of 788 papers in the field of WGS technologies were published by scientists in China, Japan and Korea. China was the top producing country with 394 papers (50%) followed by Japan with 250 papers (32%), and Korea with 144 papers (18%). The growth of the literature in the field was found to be exponential in nature for China. The R&D capabilities were found to correlate directly with the Gross Domestic Expenditures on R&D (GERD), Researchers in Full-time equivalents (FTE), and other economic parameters. Full article
(This article belongs to the Section Information and Communications Technology)
Show Figures

Figure 1

Back to TopTop