Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = Dirk Sanwald

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2146 KiB  
Article
Supported Zeolite Beta Layers via an Organic Template-Free Preparation Route
by Stephanie Reuss, Dirk Sanwald, Marion Schülein, Wilhelm Schwieger, Shaeel A. Al-Thabaiti, Mohamed Mokhtar and Sulaiman N. Basahel
Molecules 2018, 23(1), 220; https://doi.org/10.3390/molecules23010220 - 21 Jan 2018
Cited by 7 | Viewed by 5536
Abstract
Layers of high silica zeolites, synthesized with an organic structure directing agent (OSDA) and grown onto porous support structures, frequently suffer from the thermal stress during the removal of OSDA via the calcination process. The different thermal expansion coefficients of the zeolite and [...] Read more.
Layers of high silica zeolites, synthesized with an organic structure directing agent (OSDA) and grown onto porous support structures, frequently suffer from the thermal stress during the removal of OSDA via the calcination process. The different thermal expansion coefficients of the zeolite and the support material, especially when stainless steel is used as a support, causes enormous tension resulting in defect formation in the zeolite layer. However, the calcination is an easy procedure to decompose the OSDA in the pore system of the zeolite. Recently, methods to synthesize zeolite beta without the use of an organic structure directing agent have been described. In the present study, a seed-directed synthesis is used to prepare OSDA-free zeolite beta layers on stainless steel supports via an in situ preparation route. For the application as membrane, a porous stainless steel support has been chosen. The beta/stainless steel composites are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). To prove its possible application as a membrane, the beta/stainless steel composites were also tested by single gas permeances of H2, He, CO2, N2, and CH4. Full article
Show Figures

Figure 1

Back to TopTop