Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Anne-Sophie Burlot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4334 KB  
Article
Biochemical Composition and Seasonal Variations of the Madagascar Algae Eucheuma denticulatum (Solieriaceae, Rhodophyta)
by Elando Fréda Zamanileha, Anne-Sophie Burlot, Thomas Latire, Christel Marty, Philippe Douzenel, Laurent Vandanjon, Nathalie Bourgougnon, Pierre Ravelonandro and Gilles Bedoux
Mar. Drugs 2025, 23(1), 30; https://doi.org/10.3390/md23010030 - 9 Jan 2025
Cited by 3 | Viewed by 3508
Abstract
Although the density and diversity of seaweeds in Madagascar is particularly high, these resources are underexploited and they are not part of the local population’s eating habits. No study has been carried out on the nutritional properties and seasonal variation of Eucheuma species [...] Read more.
Although the density and diversity of seaweeds in Madagascar is particularly high, these resources are underexploited and they are not part of the local population’s eating habits. No study has been carried out on the nutritional properties and seasonal variation of Eucheuma species harvested in Madagascar. In this study, Eucheuma denticulatum was harvested monthly over two years (2021 and 2022) on the northeast coast of Madagascar (Sainte Marie Island). The compositional analysis revealed prominent sugars and minerals up to 41.0 and 39.5% dw, respectively. E. denticulatum showed slight variability over the seasons in the macroelements and oligoelements (Ca, K, Na, Mg, Fe, Mn) ranging from 22.8 ± 0.2 to 25.3 ± 0.1% dw in 2021 and 22.1 ± 0.3 to 26.5 ± 0.3% dw in 2022. Total amino acids varied from 2.3 ± 0.6 to 2.5 ± 0.6% dw during the two years. Seaweed extracts showed antioxidant activity by the in vitro method ranging from 2026 ± 2 to 2998 ± 4 μg.mL−1 in 2021, and from 1904 ± 2 to 2876 ± 4 μg.mL−1 in 2022. Finally, the principal component analysis (PCA) showed a correlation between protein content and environmental parameters. The nutritional characteristics therefore confirmed that E. denticulatum could potentially be used as a nutritious and functional food and could be incorporated in the diet of local populations. Full article
(This article belongs to the Special Issue Bioactive Polysaccharides from Seaweeds)
Show Figures

Graphical abstract

21 pages, 5069 KB  
Article
The Use of FTIR Spectroscopy as a Tool for the Seasonal Variation Analysis and for the Quality Control of Polysaccharides from Seaweeds
by Laurent Vandanjon, Anne-Sophie Burlot, Elando Fréda Zamanileha, Philippe Douzenel, Pierre Hervé Ravelonandro, Nathalie Bourgougnon and Gilles Bedoux
Mar. Drugs 2023, 21(9), 482; https://doi.org/10.3390/md21090482 - 1 Sep 2023
Cited by 35 | Viewed by 7721
Abstract
Macroalgae are a potentially novel source of nutrition and biologically active molecules. Proliferative species such as Eucheuma denticulatum, Solieria chordalis (red algae) and Sargassum muticum (brown alga) constitute a huge biomass that can be exploited. In this study, we focus on the [...] Read more.
Macroalgae are a potentially novel source of nutrition and biologically active molecules. Proliferative species such as Eucheuma denticulatum, Solieria chordalis (red algae) and Sargassum muticum (brown alga) constitute a huge biomass that can be exploited. In this study, we focus on the extraction of polysaccharides from these three macroalgae species and the characterization of cell wall polysaccharides such as carrageenans, fucoidans and alginates by Fourier Transform Infrared spectroscopy with Attenuated Reflectance Module (FTIR-ATR). The comparison of purified extracts with commercial solutions of fucoidans, alginates or carrageenans shows a strong similarity between the spectra. It demonstrates that the methods of extraction that have been used are also suitable purifying technics. Moreover, it validates infrared spectroscopy as a quick, simple and non-destructive method for the accurate analysis of polysaccharides. The FTIR technique applied to samples collected at different periods of the year allowed us to highlight differences in the composition of fucoidans, alginates and carrageenans. Different classes corresponding to the season can be distinguished by statistical multidimensionnal analysis (Principal Component Analysis) showing that the structure of algal polysaccharides, related to bioactivity, depends on the period of harvest. FTIR results showed that S. chordalis and E. denticulatum possess a dominant type of carrageenan called iota-carrageenan. This type of carrageenan is in the majority when the alga is at maturity in its development cycle. During its growth phase, iota-carrageenan precursors can be detected by FTIR spectra, enabling a better control of the extraction and an application of these compounds in various economic sectors. When the alga E. denticulatum is in its juvenile stage, we found traces of kappa-carrageenan and nu-carrageenan polysaccharides in some extracts. Full article
(This article belongs to the Special Issue Bioactive Polysaccharides from Seaweeds)
Show Figures

Figure 1

23 pages, 510 KB  
Article
Enzyme-Assisted Extraction of Bioactive Material from Chondrus crispus and Codium fragile and Its Effect on Herpes simplex Virus (HSV-1)
by Garima Kulshreshtha, Anne-Sophie Burlot, Christel Marty, Alan Critchley, Jeff Hafting, Gilles Bedoux, Nathalie Bourgougnon and Balakrishnan Prithiviraj
Mar. Drugs 2015, 13(1), 558-580; https://doi.org/10.3390/md13010558 - 16 Jan 2015
Cited by 88 | Viewed by 13063
Abstract
Codium fragile and Chondrus crispus are, respectively, green and red seaweeds which are abundant along the North Atlantic coasts. We investigated the chemical composition and antiviral activity of enzymatic extracts of C. fragile (CF) and C. crispus (CC). On a dry weight basis, [...] Read more.
Codium fragile and Chondrus crispus are, respectively, green and red seaweeds which are abundant along the North Atlantic coasts. We investigated the chemical composition and antiviral activity of enzymatic extracts of C. fragile (CF) and C. crispus (CC). On a dry weight basis, CF consisted of 11% protein, 31% neutral sugars, 0.8% sulfate, 0.6% uronic acids, and 49% ash, while CC contained 27% protein, 28% neutral sugars, 17% sulfate, 1.8% uronic acids, and 25% ash. Enzyme-assisted hydrolysis improved the extraction efficiency of bioactive materials. Commercial proteases and carbohydrases significantly improved (p ≤ 0.001) biomass yield (40%–70% dry matter) as compared to aqueous extraction (20%–25% dry matter). Moreover, enzymatic hydrolysis enhanced the recovery of protein, neutral sugars, uronic acids, and sulfates. The enzymatic hydrolysates exhibited significant activity against Herpes simplex virus (HSV-1) with EC50 of 77.6–126.8 μg/mL for CC and 36.5–41.3 μg/mL for CF, at a multiplicity of infection (MOI) of 0.001 ID50/cells without cytotoxity (1–200 μg/mL). The extracts obtained from proteases (P1) and carbohydrases (C3) were also effective at higher virus MOI of 0.01 ID50/cells without cytotoxity. Taken together, these results indicate the potential application of enzymatic hydrolysates of C. fragile and C. crispus in functional food and antiviral drug discovery. Full article
(This article belongs to the Special Issue Marine Functional Food)
Show Figures

Figure 1

Back to TopTop