Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,840,658)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1599 KB  
Article
Effects of Additives on the Fermentation Quality and Bacterial Community of Silage Prepared from Giant Juncao Grass Grown in Saline–Alkali Soil
by Xiaobin Chen, Shuangshuang Zhang, Menglei Shi, Lianfu Wang, Qinghua Liu, Bin Liu, Dongmei Lin and Zhanxi Lin
Agronomy 2026, 16(2), 225; https://doi.org/10.3390/agronomy16020225 (registering DOI) - 16 Jan 2026
Abstract
This study investigated the effects of different additives on the fermentation quality and bacterial community of silage prepared from Giant Juncao grass (Cenchrus fungigraminus) grown in saline–alkali soil. Four treatments were compared: a control group (CK), wheat bran (WB), fermented Juncao [...] Read more.
This study investigated the effects of different additives on the fermentation quality and bacterial community of silage prepared from Giant Juncao grass (Cenchrus fungigraminus) grown in saline–alkali soil. Four treatments were compared: a control group (CK), wheat bran (WB), fermented Juncao grass juice (FJGJ), and a combined wheat bran + fermented Juncao grass juice treatment (WB + FJGJ). Dynamic changes in physicochemical characteristics—including dry matter (DM), pH, lactic acid (LA), acetic acid (AA), propionic acid (PA), and total volatile fatty acids (TVFA)—were monitored together with shifts in bacterial community structure. Quantitative results showed that FJGJ and WB + FJGJ significantly improved fermentation performance. Compared with the control, the WB + FJGJ treatment reduced the final pH to 3.61 (p < 0.05) and increased lactic acid concentration to 48 g/kg DM. Concentrations of acetic acid and TVFA were also higher in additive-treated silages than in the control. Redundancy analysis indicated that pH and lactic acid were the main environmental factors associated with changes in bacterial community composition, whereas ether extract and acetic acid showed weaker but detectable effects. Bacterial community profiling revealed that genera such as Secundilactobacillus and Lacticaseibacillus dominated in the additive-treated groups, and that the additives significantly altered microbial community structure compared with the control. Overall, the combined application of wheat bran and fermented Juncao grass juice improved the fermentation quality of Giant Juncao grass silage grown on saline–alkali soil and promoted a bacterial community dominated by beneficial lactic acid–producing taxa. Full article
(This article belongs to the Special Issue Innovative Solutions for Producing High-Quality Silage)
Show Figures

Figure 1

14 pages, 3588 KB  
Article
Durable and Robust Janus Membranes with Asymmetric Wettability Based on Poly (Vinylidene Fluoride)/Polyvinyl Alcohol for Oil–Water Separation
by Yawen Chang, Ruihong Sun and Fujuan Liu
Materials 2026, 19(2), 363; https://doi.org/10.3390/ma19020363 (registering DOI) - 16 Jan 2026
Abstract
With the acceleration of industrialization, the problems of water resource pollution and shortage caused by oil spills and industrial wastewater discharge have become increasingly severe, posing a major threat to ecological sustainable development. Therefore, efficient oil–water separation technology has become a key breakthrough [...] Read more.
With the acceleration of industrialization, the problems of water resource pollution and shortage caused by oil spills and industrial wastewater discharge have become increasingly severe, posing a major threat to ecological sustainable development. Therefore, efficient oil–water separation technology has become a key breakthrough to alleviate this crisis. In this study, Janus membranes with asymmetric wettability were prepared by layer-by-layer electrospinning. The influence of the thickness ratio between the hydrophobic layer and the hydrophilic layer on the mechanical properties, separation flux, and oil–water mixture efficiency of the Janus membranes was examined, and an optimized membrane configuration was determined: the optimal thickness ratio between hydrophobic and hydrophilic layers was 4:6. Under these conditions, the fracture stress of the fiber membranes reached 99% MPa, the fracture strain was 55.63 ± 4.77%, the separation flux values were 1888.22 and 1042.66 L m−2 h−1 for the oil–water mixture and water-in-oil emulsion, respectively, with the separation efficiencies all exceeding 99%. After 50 cycles of separation for two different oil-in-water emulsions, the separation flux and separation efficiency of the optimal sample remained relatively stable, demonstrating strong practicability. In general, the Janus fiber membranes met the expected requirements, laying a good foundation for future applications in oil–water separation, floating oil collection in water, and other fields. Full article
Show Figures

Figure 1

15 pages, 548 KB  
Systematic Review
Vitamin D and Omega-3 Supplementation for Emotional and Behavioral Dysregulation in Autism Spectrum Disorders: A Systematic Review
by Marta Berni, Giulia Mutti, Raffaella Tancredi, Filippo Muratori and Sara Calderoni
J. Clin. Med. 2026, 15(2), 745; https://doi.org/10.3390/jcm15020745 (registering DOI) - 16 Jan 2026
Abstract
Background/Objectives: Emotional dysregulation (ED) is emerging as a major contributor to functional impairment in Autism Spectrum Disorder (ASD). Although effective behavioral interventions exist, pharmacological treatments remain constrained by side effects and variable tolerability. Given their neurobiological roles that include neurotransmission, inflammation, and neuroplasticity, [...] Read more.
Background/Objectives: Emotional dysregulation (ED) is emerging as a major contributor to functional impairment in Autism Spectrum Disorder (ASD). Although effective behavioral interventions exist, pharmacological treatments remain constrained by side effects and variable tolerability. Given their neurobiological roles that include neurotransmission, inflammation, and neuroplasticity, vitamin D and omega-3 polyunsaturated fatty acids (PUFAs) have been identified as promising candidates for modulating emotional and behavioral dysregulation. This systematic review aimed to evaluate the efficacy of combined vitamin D and omega-3 supplementation in improving emotional and behavioral regulation in individuals with ASD. Methods: This review was conducted in accordance with PRISMA guidelines. Included studies were English peer-reviewed studies involving participants with ASD that assessed combined vitamin D and omega-3 suppleupplementation with outcomes related to emotional or behavioral dysregulation. The search was restricted to 2015–2025 to ensure inclusion of recent, methodologically consistent studies and to minimize heterogeneity in diagnostic criteria and supplementation protocols. Results: Of 649 records initially screened, 3 studies met inclusion criteria: one randomized controlled trial, one observational study, and one case report, involving participants ranging from early childhood to young adulthood. Across studies, combined supplementation was associated with improvements in irritability, hyperactivity, agitation, and self-injurious behaviors. These clinical effects were accompanied by specific biochemical changes, including reductions in the AA/EPA ratio, increases in serum 25(OH)D and omega-3 indices, and decreased urinary levels of HVA and VMA. Conclusions: This review indicates that co-supplementation with vitamin D and omega-3 fatty acids may exert preliminary beneficial effects on emotional and behavioral dysregulation in individuals with ASD, potentially through anti-inflammatory and neuroregulatory mechanisms. However, the available evidence remains limited due to a small number of studies, their modest sample size, and methodological heterogeneity. Further, biomarker-driven randomized studies are needed to confirm efficacy and delineate optimal dosing strategies for application in clinics. Full article
(This article belongs to the Special Issue Autism Spectrum Disorder: Diagnosis, Treatment, and Management)
Show Figures

Figure 1

27 pages, 2823 KB  
Article
Effects of Post-Heat Treatment on Mechanical and Tribological Properties of 3D-Printed PLA and PEEK Structures
by Yunxiang Deng and Li Chang
Polymers 2026, 18(2), 253; https://doi.org/10.3390/polym18020253 (registering DOI) - 16 Jan 2026
Abstract
In the present study, post-heat treatment was applied to improve the mechanical and tribological performance of 3D-printed polymer components. Two polymers, i.e., polylactic acid (PLA) and polyether ether ketone (PEEK), were used as base materials. Re-entrant structures were incorporated into printed specimens to [...] Read more.
In the present study, post-heat treatment was applied to improve the mechanical and tribological performance of 3D-printed polymer components. Two polymers, i.e., polylactic acid (PLA) and polyether ether ketone (PEEK), were used as base materials. Re-entrant structures were incorporated into printed specimens to mitigate friction-induced vibrations (FIV). The results showed that the heat-treatment process effectively enhanced the mechanical properties of both materials by increasing their elastic modulus and yield strength. Specifically, the tensile and compressive strengths of heat-treated PLA increased from 44.14 MPa to 47.66 MPa and from 68 MPa to 82 MPa, respectively. A similar trend was observed for heat-treated PEEK, with tensile strength increasing from 75.53 MPa to 84.91 MPa and compressive strength from 106 MPa to 123 MPa. Furthermore, the increased stiffness enabled the re-entrant structures to more effectively reduce FIV during the sliding process of specimens. However, heat treatment produced contrasting effects on the wear performance of the two polymers. The specific wear rate of the heat-treated PLA sample with the re-entrant structure increased from 2.36 × 10−5 mm3/(N · m) to 4.5 × 10−4 mm3/(N · m), while it decreased for the PEEK sample from 3.18 × 10−6 mm3/(N · m) to 6.2 × 10−7 mm3/(N · m). Microscopic observations revealed that this difference was due to the variations in the brittleness of the treated materials, which influenced wear-debris formation and the development of the transfer film on the steel counterface. These findings demonstrate that post-heat treatment is an effective method for tailoring and optimizing the mechanical behavior of printed polymers while also emphasizing the necessity of systematically evaluating its influence on the tribological performance of printed engineering parts subjected to different sliding conditions. Full article
18 pages, 2211 KB  
Article
Metabolomic Signatures of Recovery: A Secondary Analysis of Public Longitudinal LC–MS Datasets Shows Polyphenol-Rich Interventions Attenuate Purine Degradation and Oxidative Stress Following Exhaustive Exercise
by Xuyang Wang, Chang Liu, Yirui Chen, Mengyang Wang, Kai Zhao and Wei Jiang
Metabolites 2026, 16(1), 79; https://doi.org/10.3390/metabo16010079 (registering DOI) - 16 Jan 2026
Abstract
Background: Post-exercise recovery involves coordinated metabolic restoration and redox rebalancing. Although dietary polyphenols have been proposed to facilitate recovery, the metabolic mechanisms underlying their effects—particularly during the recovery phase—remain insufficiently characterized. This study aimed to investigate how polyphenol supplementation modulates post-exercise metabolic recovery [...] Read more.
Background: Post-exercise recovery involves coordinated metabolic restoration and redox rebalancing. Although dietary polyphenols have been proposed to facilitate recovery, the metabolic mechanisms underlying their effects—particularly during the recovery phase—remain insufficiently characterized. This study aimed to investigate how polyphenol supplementation modulates post-exercise metabolic recovery using an integrative metabolomics approach. Methods: We conducted a secondary analysis of publicly available longitudinal human LC–MS metabolomics datasets from exercise intervention studies with polyphenol supplementation. Datasets were obtained from the NIH Metabolomics Workbench and MetaboLights repositories; study-level metadata were used as provided by the original investigators. Global metabolic trajectories were assessed using principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Targeted analyses focused on purine degradation intermediates and redox-related metabolites. Correlation-based network and pathway enrichment analyses were applied to characterize recovery-phase metabolic reorganization. Results: Exercise induced a pronounced global metabolic perturbation in both placebo and polyphenol groups. During recovery, polyphenol supplementation was associated with a partial reversion of the metabolome toward the pre-exercise state, whereas placebo samples remained metabolically displaced. Discriminant metabolite analyses identified purine degradation intermediates and oxidative stress-related lipid species as key contributors to group separation during recovery. Polyphenol supplementation attenuated recovery-phase accumulation of hypoxanthine, xanthine, and uric acid and was associated with a sustained suppression of the uric acid-to-hypoxanthine ratio. Network analyses revealed weakened correlations between purine metabolites and oxidative stress markers, along with reduced network centrality of stress-responsive metabolic hubs. Conclusions: These findings indicate that polyphenol supplementation is associated with accelerated metabolic normalization during post-exercise recovery, potentially through modulation of purine-associated oxidative pathways and system-level metabolic network reorganization. Full article
Show Figures

Figure 1

23 pages, 3599 KB  
Article
Antioxidant Intervention in NAFLD: Astaxanthin and Kokum Modulate Redox Status and Lysosomal Degradation
by Natalia Ksepka, Natalia Kuzia, Sara Frazzini, Luciana Rossi, Małgorzata Łysek-Gładysińska, Michał Ławiński and Artur Jóźwik
Molecules 2026, 31(2), 321; https://doi.org/10.3390/molecules31020321 (registering DOI) - 16 Jan 2026
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major metabolic disorder characterized by hepatic lipid accumulation, oxidative stress, and disturbance of lysosomal degradation. Central to these processes is glutathione (GSH), a key antioxidant regulating redox balance and cellular homeostasis. This study aimed to evaluate [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a major metabolic disorder characterized by hepatic lipid accumulation, oxidative stress, and disturbance of lysosomal degradation. Central to these processes is glutathione (GSH), a key antioxidant regulating redox balance and cellular homeostasis. This study aimed to evaluate the therapeutic potential of two dietary antioxidants—astaxanthin and Garcinia indica (kokum)—in modulating hepatic redox status, lysosomal function, and metabolic gene expression in a murine model of diet-induced NAFLD. A total of 120 male Swiss Webster mice were allocated into control and steatotic groups, followed by a 90-day supplementation period with astaxanthin, kokum, or their combination. Liver tissue was collected post-supplementation for biochemical, antioxidant, and qRT-PCR analyses. Outcomes included lysosomal enzymes activities, superoxide dismutase (SOD), GSH, vitamin C, total polyphenols, DPPH radical-scavenging activity, and total antioxidant capacity (TAC). NAFLD induced marked oxidative stress, lysosomal overactivation, and alteration of antioxidant-related gene expression. Combined supplementation restored GSH, enhanced TAC, reduced lysosomal stress markers, and significantly upregulated nuclear factor erythroid 2-related factor 2 (Nfe2l2) while downregulating fatty acid synthase (FASN) and partially rescuing lipoprotein lipase (LpL). Correlation analyses revealed strong associations between antioxidant capacity, lysosomal function, and transcriptional regulation, supporting the therapeutic relevance of combined antioxidant therapy for concurrent redox and lysosomal dysregulation in NAFLD. These findings underscore the therapeutic potential of targeting redox and cellular degradation pathways with antioxidant-based interventions to re-establish hepatic metabolic balance in NAFLD and related disorders. Full article
(This article belongs to the Special Issue Antioxidant, and Anti-Inflammatory Activities of Natural Plants)
Show Figures

Graphical abstract

25 pages, 32460 KB  
Article
Physically Consistent Radar High-Resolution Range Profile Generation via Spectral-Aware Diffusion for Robust Automatic Target Recognition Under Data Scarcity
by Shuai Li, Yu Wang, Jingyang Xie and Biao Tian
Remote Sens. 2026, 18(2), 316; https://doi.org/10.3390/rs18020316 (registering DOI) - 16 Jan 2026
Abstract
High-Resolution Range Profile (HRRP) represents the electromagnetic backscattering distribution of targets and plays a pivotal role in remote-sensing-based Automatic Target Recognition (RATR). However, in non-cooperative sensing scenarios, acquiring sufficient measured data is severely constrained by operational costs and physical limitations, leading to data [...] Read more.
High-Resolution Range Profile (HRRP) represents the electromagnetic backscattering distribution of targets and plays a pivotal role in remote-sensing-based Automatic Target Recognition (RATR). However, in non-cooperative sensing scenarios, acquiring sufficient measured data is severely constrained by operational costs and physical limitations, leading to data scarcity that hampers model robustness. To overcome this, we propose SpecM-DDPM, a spectral-aware Denoising Diffusion Probabilistic Models (DDPM) tailored for generating high-fidelity HRRPs that preserve physical scattering properties. Unlike generic generative models, SpecM-DDPM incorporates radar signal physics into the diffusion process. Specifically, a parallel multi-scale block is designed to adaptively capture both local scattering centers and global target resonance structures. To ensure spectral fidelity, a spectral gating mechanism serves as a physics-constrained filter to calibrate the energy distribution in the frequency domain. Furthermore, a Frequency-Aware Curriculum Learning (FACL) strategy is introduced to guide the progressive reconstruction from low-frequency structural components to high-frequency scattering details. Experiments on measured aircraft data demonstrate that SpecM-DDPM generates samples with high physical consistency, significantly enhancing the generalization performance of radar recognition systems in data-limited environments. Full article
21 pages, 1157 KB  
Article
Personality–Cognition Pathways to Safety Behavior: Mediating Effects of Risk Cognition Across Groups
by Jingnan Sun, Fangrong Chang, Zilong Zhou and Siu-Shing Man
Buildings 2026, 16(2), 386; https://doi.org/10.3390/buildings16020386 (registering DOI) - 16 Jan 2026
Abstract
Personality traits are well-established predictors of safety behavior in construction, yet the cognitive mechanisms through which these traits influence such behavior remain poorly understood. In particular, hazard recognition and risk perception are underexamined cognitive mediators that elucidate how personality traits shape safety behavior. [...] Read more.
Personality traits are well-established predictors of safety behavior in construction, yet the cognitive mechanisms through which these traits influence such behavior remain poorly understood. In particular, hazard recognition and risk perception are underexamined cognitive mediators that elucidate how personality traits shape safety behavior. Moreover, the mediating effects of these cognitive processes are likely to vary across individuals, reflecting heterogeneity in background characteristics. Neglecting these mediating processes and their differentiated effects not only limits theoretical understanding of the pathways linking personality traits to safety behavior but also undermines the effectiveness of safety interventions. To address this gap, this study develops a framework incorporating cognitive mediators to examine how personality traits influence safety behavior (safety compliance and participation). The hypothesized cognitive-mediation pathways were tested using structural equation modeling based on offline questionnaire data collected from 213 site managers and workers. The findings reveal distinct cognitive pathways through which personality traits shape safety behavior. Extraversion and openness indirectly reduced safety compliance and safety participation by weakening hazard recognition and risk perception, either independently or sequentially. In contrast, agreeableness and conscientiousness enhanced safety behavior by strengthening these same cognitive processes. Higher education levels positively moderated certain mediating effects, whereas extensive work experience exerted mixed influences on specific pathways, facilitating some and inhibiting others depending on context. These findings deepen understanding of the internal mechanisms through which personality traits influence safety behavior via risk cognition. By identifying differentiated pathways across groups, this study further refines the theoretical framework explaining construction workers’ safety behavior. In addition, the theoretical insights generated by this study offer proactive and effective directions for safety practice, including improving person–job fit, designing targeted risk cognition training, and implementing stratified safety management strategies. Full article
(This article belongs to the Special Issue Safety and Health in the Building Lifecycle)
Show Figures

Figure 1

25 pages, 2212 KB  
Article
Will AI Replace Us? Changing the University Teacher Role
by Walery Okulicz-Kozaryn, Artem Artyukhov and Nadiia Artyukhova
Societies 2026, 16(1), 32; https://doi.org/10.3390/soc16010032 (registering DOI) - 16 Jan 2026
Abstract
This study examines how Artificial Intelligence (AI) is reshaping the role of university teachers and transforming the foundations of academic work in the digital age. Building on the Dynamic Capabilities Theory (sensing–seizing–transforming), the article proposes a theoretical reframing of university teachers’ perceptions of [...] Read more.
This study examines how Artificial Intelligence (AI) is reshaping the role of university teachers and transforming the foundations of academic work in the digital age. Building on the Dynamic Capabilities Theory (sensing–seizing–transforming), the article proposes a theoretical reframing of university teachers’ perceptions of AI. This approach allows us to bridge micro-level emotions with meso-level HR policies and macro-level sustainability goals (SDGs 4, 8, and 9). The empirical foundation includes a survey of 453 Ukrainian university teachers (2023–2025) and statistics, supplemented by a bibliometric analysis of 26,425 Scopus-indexed documents. The results indicate that teachers do not anticipate a large-scale replacement by AI within the next five years. However, their fear of losing control over AI technologies is stronger than the fear of job displacement. This divergence, interpreted through the lens of dynamic capabilities, reveals weak sensing signals regarding professional replacement but stronger signals requiring managerial seizing and institutional transformation. The bibliometric analysis further demonstrates a theoretical evolution of the university teacher’s role: from a technological adopter (2021–2022) to a mediator of ethics and integrity (2023–2024), and, finally, to a designer and architect of AI-enhanced learning environments (2025). The study contributes to theory by extending the application of Dynamic Capabilities Theory to higher education governance and by demonstrating that teachers’ perceptions of AI serve as indicators of institutional resilience. Based on Dynamic Capabilities Theory, the managerial recommendations are divided into three levels: government, institutional, and scientific-didactic (academic). Full article
(This article belongs to the Special Issue Technology and Social Change in the Digital Age)
Show Figures

Figure 1

15 pages, 2212 KB  
Article
Enhancing User Experience in Virtual Reality Through Optical Flow Simplification with the Help of Physiological Measurements: Pilot Study
by Abdualrhman Abdalhadi, Nitin Koundal, Mahdiyeh Sadat Moosavi, Ruding Lou, Mohd Zuki bin Yusoff, Frédéric Merienne and Naufal M. Saad
Sensors 2026, 26(2), 610; https://doi.org/10.3390/s26020610 (registering DOI) - 16 Jan 2026
Abstract
The use of virtual reality (VR) has made significant advancements, and now it is widely used across a range of applications. However, consumers’ capacity to fully enjoy VR experiences continues to be limited by a chronic problem known as cybersickness (CS). This study [...] Read more.
The use of virtual reality (VR) has made significant advancements, and now it is widely used across a range of applications. However, consumers’ capacity to fully enjoy VR experiences continues to be limited by a chronic problem known as cybersickness (CS). This study explores the feasibility of mitigating CS through geometric scene simplification combined with electroencephalography (EEG)-based monitoring. According to the sensory conflict theory, this issue is caused by the discrepancy between the visually induced self-motion (VIMS) through immersive displays and the real motion the vestibular system detects. While prior mitigation strategies have largely relied on hardware modifications or visual field restrictions, this paper introduces a novel framework that integrates geometric scene simplification with EEG-based neurophysiological activity to reduce VIMS during VR immersion. The proposed framework combines EEG neurophysiology, allowing us to monitor users’ brainwave activity and cognitive states during virtual immersion experience. The empirical evidence from our investigation shows a correlation between CS manifestation and neural activation in the parietal and temporal lobes. As an experiment with 15 subjects, statistical differences were significantly different with P= 0.001 and large effect size η2=0.28, while preliminary trends suggest lower neural activation during simplified scenes. Notably, a decrease in neural activation corresponding to reduced optic flow (OF) suggests that VR environment simplification may help attenuate CS symptoms, providing preliminary support for the proposed strategy. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

14 pages, 720 KB  
Article
Both Season and Equid Type Affect Endogenous Adrenocorticotropic Hormone Concentrations in Healthy Donkeys, Mules and Hinnies in the United States
by Erin L. Goodrich, Sebastián Gonzalo Llanos-Soto, Renata Ivanek, Toby Pinn-Woodcock, Elisha Frye, Amy Wells, Stephen R. Purdy, Emily Berryhill and Ned J. Place
Animals 2026, 16(2), 290; https://doi.org/10.3390/ani16020290 (registering DOI) - 16 Jan 2026
Abstract
Baseline plasma ACTH concentrations are frequently utilized as part of the diagnostic evaluation of equids when PPID is suspected. Baseline ACTH can be impacted by many factors including time of year, i.e., ACTH has generally been found to be elevated during late summer [...] Read more.
Baseline plasma ACTH concentrations are frequently utilized as part of the diagnostic evaluation of equids when PPID is suspected. Baseline ACTH can be impacted by many factors including time of year, i.e., ACTH has generally been found to be elevated during late summer through early autumn in the northern hemisphere. An understanding of ACTH concentrations in healthy equids over the course of a year is useful for the proper interpretation of concentrations in PPID-suspect animals. Previous studies assessing ACTH concentrations in healthy donkeys (Equus asinus) and hybrids (E. asinus x E. caballus) are limited, often utilizing very small numbers, equids from specific and limited geographical regions, limited timeframes or unspecified donkey types (miniature, standard, or mammoth). We aimed to characterize the seasonal variation in baseline ACTH concentrations in healthy miniature donkeys, standard donkeys and hybrids in the United States (US) and to compare those concentrations across these groups. Following outlier removal, 19 standard donkeys (from California (CA), Massachusetts (MA), New York (NY)), 14 miniature donkeys (CA and NY), and 28 hybrids (Texas (TX) and NY) were utilized for analysis. Samples were collected from each equid twice per month from June to November 2019 and once per month from December 2019 through May 2020. The mean ACTH concentration of all equids was higher from mid-August through the end of October compared to the rest of the year (being the highest in the second half of September with the mean (standard deviation) values of 109.6 (52.6), 134.6 (67.4), and 100.8 (189.6) in standard donkeys, miniature donkeys, and hybrids, respectively). Additionally, ACTH concentrations in hybrids were 23% (95% Confidence Interval (CI): 4–38%) and 51% (95% CI: 36–63%) lower than in standard and miniature donkeys, respectively, from mid-August through October. During the rest of the year, hybrids similarly showed 31% (95% CI: 16–43%) and 30% (95% CI: 15–42%) lower ACTH concentrations compared with standard and miniature donkeys, respectively. Full article
(This article belongs to the Special Issue Current Research on Donkeys and Mules: Second Edition)
30 pages, 751 KB  
Hypothesis
Bonded Green Exercise: A One Health Framework for Shared Nature-Based Physical Activity in the Human–Dog Dyad
by Krista B. Halling, Mark Bowden, Jules Pretty and Jennifer Ogeer
Animals 2026, 16(2), 291; https://doi.org/10.3390/ani16020291 (registering DOI) - 16 Jan 2026
Abstract
Modern lifestyles are increasingly plagued by physical inactivity, social disconnection, digital addiction, and excessive time indoors—factors that negatively impact the health and well-being of both humans and their companion dogs (Canis familiaris). Evidence shows that nature exposure, physical activity, and human–animal [...] Read more.
Modern lifestyles are increasingly plagued by physical inactivity, social disconnection, digital addiction, and excessive time indoors—factors that negatively impact the health and well-being of both humans and their companion dogs (Canis familiaris). Evidence shows that nature exposure, physical activity, and human–animal bond (HAB) each enhance physical, mental, and social well-being, yet these domains have rarely been examined together as an integrated therapeutic triad. We introduce a new conceptual framework of bonded green exercise, defined as shared physical activity between a bonded human and dog in natural environments. Synthesizing existing evidence across human and canine sciences into a testable conceptual integration, we posit that bonded green exercise may plausibly activate evolutionarily conserved, synergistic mechanisms of physiological, behavioural, and affective co-regulation. Four testable hypotheses are proposed: (H1) triadic synergy: combined domains produce greater benefits than additive effects; (H2) heterospecific benefit: parallel health gains occur in both species; (H3) behavioural amplification: dogs acts as catalysts to drive human participation in nature-based activity; and (H4) scalable health promotion: bonded green exercise represents a low-cost, accessible, One Health approach with population-level potential. This framework highlights how intentional, shared physical activity in nature may potentially offer a novel low-cost and accessible model for enhancing health, lifespan, welfare, and ecological stewardship across species. Full article
(This article belongs to the Special Issue Second Edition: Research on the Human–Companion Animal Relationship)
18 pages, 2575 KB  
Article
MoO3-Based Photocatalysts for the Depolymerization of Lignin Under UV-Vis Light
by Elena Teresa Palombella, Antonio Monopoli, Maria Chiara Sportelli, Federico Liuzzi, Isabella De Bari, Lucia D’Accolti and Cosimo Annese
Catalysts 2026, 16(1), 95; https://doi.org/10.3390/catal16010095 (registering DOI) - 16 Jan 2026
Abstract
In this explorative work, molybdenum trioxide (MoO3) and representative doped MoO3 materials, i.e., Cu-doped MoO3 (2% Cu, “Cu-MoO3”) and H-doped MoO3 (H0.31MoO3, “H-MoO3”), have been tested for the first time [...] Read more.
In this explorative work, molybdenum trioxide (MoO3) and representative doped MoO3 materials, i.e., Cu-doped MoO3 (2% Cu, “Cu-MoO3”) and H-doped MoO3 (H0.31MoO3, “H-MoO3”), have been tested for the first time as photocatalysts in the UV-vis light-driven depolymerization of lignin. The catalysts have been characterized by XRD, TEM, ATR-FTIR, and UV-vis DRS. Under the adopted conditions (UV-vis irradiation, solvent 0.01 M aqueous NaOH, lignin 200 ppm, catalyst 1 g/L, rt, 5 h), photocatalytic depolymerization of wheat-straw lignin (WSL) produced increasing amounts of bio-oil on changing the catalyst from pristine MoO3 to Cu-MoO3 and H-MoO3 (23%, 28% and 30%, respectively). Also, quantification of vanillin and vanillic acid shows a similar increasing trend. These results appear in line with the estimated band gap energies, which decrease in the order: MoO3 (2.91 eV) > Cu-MoO3 (2.86 eV) > H-MoO3 (2.77 eV). H-MoO3 shows the best catalytic performance, which was then fruitfully explored in the photocatalytic depolymerization of benchmark commercial Kraft lignin (bio-oil yield 32%, vanillin and vanillic acid yields 1.28% and 0.78%, respectively). In view of the results obtained, this work is expected to provide new ideas for the design of heterogeneous photocatalytic system for lignin cleavage. Full article
(This article belongs to the Special Issue Catalysts from Lignocellulose to Biofuels and Bioproducts)
Show Figures

Graphical abstract

16 pages, 580 KB  
Article
Functional Food Potential of White Tea from East Black Sea Region: Targeting GREM1 Expression and Metabolic Dysregulation in Obesity
by Mehtap Atak, Hülya Kılıç, Bayram Şen and Medeni Arpa
Int. J. Mol. Sci. 2026, 27(2), 929; https://doi.org/10.3390/ijms27020929 (registering DOI) - 16 Jan 2026
Abstract
Obesity is a major global health concern, being associated with insulin resistance and multiple metabolic disorders. Gremlin 1 (GREM1), a bone morphogenetic protein (BMP) antagonist, is increasingly recognized as a key regulator of adipose tissue dysfunction and impaired thermogenesis in obesity. Orlistat, a [...] Read more.
Obesity is a major global health concern, being associated with insulin resistance and multiple metabolic disorders. Gremlin 1 (GREM1), a bone morphogenetic protein (BMP) antagonist, is increasingly recognized as a key regulator of adipose tissue dysfunction and impaired thermogenesis in obesity. Orlistat, a lipase inhibitor that reduces dietary fat absorption, is one of the most commonly used pharmacological agents for obesity management. White tea has demonstrated antioxidant and anti-obesity properties in experimental models. The aim of this study was to evaluate the effects of white tea on metabolic parameters (HOMA-IR, BMP4, Gremlin1) and GREM1 expression in rats made obese by a high-fat diet (HFD). A total of 40 male Sprague-Dawley rats were randomized into five groups: a standard diet group (STD); a high-fat diet group (HFD); an HFD + orlistat group (ORL); an HFD + 50 mg/kg white tea group (WT50); and an HFD + 150 mg/kg white tea group (WT150). Obesity was induced by feeding the rats a 45% high-fat diet for 3 weeks. Serum insulin, glucose and HOMA-IR levels were measured. Levels of GREM1 and BMP4 in serum and retroperitoneal adipose tissue were assessed. White tea supplementation significantly reduced weight gain and HOMA-IR compared to the HFD group. GREM1 mRNA expression in visceral adipose tissue decreased markedly in the WT50 and WT150 groups (p = 0.002 and p = 0.017, respectively). Serum GREM1 levels were significantly lower in the white tea-treated groups than in the HFD group (p = 0.011). Tissue BMP4 levels were only significantly reduced in the WT50 group (p = 0.005), indicating a non-linear dose–response pattern. There was a negative correlation between serum BMP4 levels and weight gain (rho = –0.440, p = 0.015). White tea was associated with improvements in metabolic parameters in an HFD-induced obesity model. These observations suggest a potential association between white tea bioactives and adipose tissue-related molecular pathways implicated in obesity. Given the short intervention duration and the exploratory design of this animal study, the findings should be interpreted with caution. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods Against Diseases)
20 pages, 1815 KB  
Article
Modelling, Optimisation, and Construction of a High-Temperature Superconducting Maglev Demonstrator
by Chenxuan Zhang, Qian Dong, Hongye Zhang and Markus Mueller
Machines 2026, 14(1), 108; https://doi.org/10.3390/machines14010108 (registering DOI) - 16 Jan 2026
Abstract
To achieve global carbon-neutrality goals, magnetic levitation (maglev) technologies offer a promising pathway toward sustainable, energy-efficient transportation systems. In this study, a comprehensive methodology was developed to analyse and optimise the levitation performance of high-temperature superconducting (HTS) maglev systems. Several permanent magnet guideway [...] Read more.
To achieve global carbon-neutrality goals, magnetic levitation (maglev) technologies offer a promising pathway toward sustainable, energy-efficient transportation systems. In this study, a comprehensive methodology was developed to analyse and optimise the levitation performance of high-temperature superconducting (HTS) maglev systems. Several permanent magnet guideway (PMG) configurations were compared, and an optimised PMG Halbach array design was identified that enhances flux concentration and significantly improves levitation performance. To accurately model the electromagnetic interaction between the HTS bulk and the external magnetic field, finite element models based on the H-formulation were established in both two dimensions (2D) and three dimensions (3D). An HTS maglev demonstrator was built using YBCO bulks, and an experimental platform was constructed to measure levitation force. While the 2D model offers fast computation, it shows deviations from the measurements due to geometric simplifications, whereas the 3D model predicts levitation forces for the cylindrical bulk with much higher accuracy, with errors remaining below 10%. The strong agreement between experimental measurements and the 3D simulation across the entire force–height cycle confirms that the proposed model reliably reproduces the electromagnetic coupling and resulting levitation forces in HTS maglev systems. The paper provides a practical and systematic reference for the optimal design and experimental validation of HTS bulk-based maglev systems. Full article
(This article belongs to the Section Vehicle Engineering)
Back to TopTop