Nutrition Promotion to Prevent Obesity in Young Adults
Abstract
:1. Introduction
2. Background
3. Individual Food Behaviours Distinctive of Young Adults
4. Readiness of Young Adults to Change Behaviours and Enablers and Barriers
5. Programs for Individual Behavior Change
| Principal Investigator | Study Name | Population | Sample Size | Intervention | Comparison | Outcome |
|---|---|---|---|---|---|---|
| Leslie Lytle University of Minnesota | CHOICES | Community College students | 441 | One credit college course on behaviours for weight control. Web-based social network site with goal setting and tracking of weight and behaviours | Public Health information only and usual care | Change in BMI |
| Laura Svetkey Duke University | CITY | Overweight/obese young adults | 365 | Two intervention arms
| Usual Care | Change in weight |
| Christine Olsen Cornell University & Isabel Fernandez University of Rochester | e-MomsRoc | Pregnant women | 1691 |
| Non-weight related information on web site | Difference in proportion unhealthy gestational weight gain and weight retention post-partum |
| John Jakicic University of Pittsburgh | IDEA | Overweight/obese young adults | 471 | Standard plus Enhanced weight loss intervention. Additional treatment are text messages, self- monitoring via web site plus wearable monitor to track activity/energy expenditure | Control Standard weight loss intervention; face-to-face plus phone calls | Change in weight |
| Kevin Patrick University of California, San Diego | SMART | Overweight/obese 4 year college students | 404 | Intervention theory based content on physical activity diet and weight management via text messages, emails Facebook and Apps | Control web site with standard health information | Change in weight |
| Rena Wing Brown University Deborah Tate University of North Carolina | SNAP | Young adults | 600 |
| Usual care | Change in weight |
| Karen Johnson University of Tennessee | TARGIT | Young adult smokers | 330 | Tobacco quite line plus Behavioural weight gain prevention program with smoking cessation apps, self-monitoring, webinars and web site | Tobacco quit line | Change in weight |
| Principal Investigator | Study Name | Population | Sample Size | Intervention | Comparison | Outcome |
|---|---|---|---|---|---|---|
| Margaret Allman-Farinelli University of Sydney [49] | TXT2BFiT | Overweight young adults 18 to 35 years | 250 | Lifestyle behavioural intervention with text messages, 5 coaching calls, email, apps and web site for self-monitoring and diet booklet. | 4 text messages 1 phone call Public health nutrition and physical activity guidelines | Change in weight |
| Deborah Kerr Curtin University [50] | CHAT | 18 to 30 year olds | 300 | Two intervention arms. Mobile dietary food record
| Control arm Mobile dietary food record only | Change in fruit and vegetables intake |
| Bianca Share Australian Catholic University [51] | 12 week multidisciplinary lifestyle intervention | 18 to 30 year old women with abdominal obesity | 68 | Physical activity sessions, nutrition education and cognitive behavioral therapy | Wait-list control | Waist circumference |
| Melinda Hutchesson University of Newcastle [52] | Be Positive Be Healthe | 18 to 35 year old women Overweight/obese | 114 | Individual advice and goal setting for energy intake and expenditure e-tools web site, apps, text messages, newsletters | Wait list control | Weight change |
6. Medium for Program Delivery
7. Environmental Level Changes
8. Other Considerations
9. Conclusions
Acknowledgments
Conflicts of Interest
References
- Obesity Update. Available online: http://www.oecd.org/health/Obesity-Update-2014.pdf (accessed on 20 August 2015).
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of childhood and adult obesity in the United States, 2011–2012. J. Am. Med. Assoc. 2014, 311, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Allman-Farinelli, M.; Chey, T.; Bauman, A.; Gill, T.; James, P.W.T. Age, period and birth cohort effects on prevalence of overweight and obesity in Australian adults from 1990 to 2000. Eur. J. Clin. Nutr. 2008, 62, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Reither, E.N.; Hauser, R.M.; Yang, Y. Do birth cohorts matter? Age-period-cohort analyses of the obesity epidemic in the United States. Soc. Sci. Med. 2009, 69, 1439–1448. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Gilthorpe, M.S.; Shiely, F.; Harrington, J.M.; Perry, I.J.; Kelleher, C.C.; Tu, Y. Age-period-cohort analysis for trends in body mass index in Ireland. BMC Public Health 2013. [Google Scholar] [CrossRef] [PubMed]
- Tanamas, S.K.; Magliano, D.J.; Lynch, B.; Sethi, P.; Willenberg, L.; Polkinghorne, K.R.; Chadban, S.; Dunstan, D.; Shaw, J.E. AusDiab 2012: The Australian Diabetes, Obesity and Lifestyle Study; Baker IDI Heart and Diabetes Institute: Melbourne, Australia, 2013. [Google Scholar]
- Gow, R.W.; Trace, S.E.; Mazzeo, S.E. Preventing weight gain in first year college students: An online intervention to prevent the “Freshman Fifteen”. Eat. Behav. 2010, 11, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Tchernof, A.; Despres, J.P. Pathophysiology of human visceral obesity: An update. Pathophysiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Moubarac, J.C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-processed products are becoming dominant in the global food system. Obes. Rev. 2013, 14, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.F.; Leitzmann, M.F.; Ballard-Barbash, R.; Albans, D.; Harris, T.B.; Hollenback, A.; Kipnios, V. Body mass and weight change in adults in relation to mortality risk. Am. J. Epidemiol. 2014, 179, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Yarnell, J.W.; Patterson, C.C.; Thomas, H.F.; Sweetnam, P.M. Comparison of weight in middle age, weight at 18 years, and weight change between, in predicting subsequent 14 year mortality and coronary events: Caerphilly Prospective Study. J. Epidemiol. Community Health 2000, 54, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, T.; Kuriyama, S.; Ohmori-Matsuda, K.; Kikuchi, N.; Nakaya, N.; Tsuji, I. Increase in body mass index category since age 20 years and all-cause mortality: A prospective cohort study (the Ohsaki Study). Int. J. Obes. 2009, 33, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Taing, K.Y.; Ardern, C.I.; Kuk, J.L. Effect of the timing of weight cycling during adulthood on mortality risk in overweight and obese postmenopausal women. Obesity 2012, 20, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.; Allman-Farinelli, M.A.; Bauman, A.E.; King, L. A birth cohort comparison of the costs of illness attributable to obesity in Australia. Asia Pac. J. Clin. Nutr. 2009, 18, 63–70. [Google Scholar] [PubMed]
- Australian Bureau of Statistics. 4364.0.55.007—Australian Health Survey: Nutrition First Results—Foods and Nutrients, 2011–2012; ABS: Canberra, Australia, 2014.
- Briggs, A.D.; Mytton, O.T.; Kehlbacher, A.; Tiffin, R.; Rayner, M.; Scarborough, P. Overall and income specific effect on prevalence of overweight and obesity of 20% sugar sweetened drink tax in UK: Econometric and comparative risk assessment modelling study. Br. Med. J. 2013. [Google Scholar] [CrossRef] [PubMed]
- Kit, B.; Fakhouri, T.H.; Park, S.; Nielsen, S.J.; Ogden, C.L. Trends in sugar sweetened beverage consumption among youth and adults in the United States: 1999–2010. Am. J. Clin. Nutr. 2013, 98, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Gray, A.R.; Mainvil, L.A.; Fleming, E.A.; Parnell, W.R. Secular changes in intakes of foods among New Zealand adults from 1997 to 2008/09. Public Health Nutr. 2015, 10, 1–11. [Google Scholar]
- Greenwood, D.C.; Threapleton, D.E.; Evans, C.E.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Burley, V.J. Association between sugar-sweetened and artificially sweetened soft drinks and type 2 diabetes: Systematic review and dose-response meta-analysis of prospective studies. Br. J. Nutr. 2014, 112, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.P.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: A meta-analysis. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Popkin, B.; Bray, G.A.; Després, J.P.; Hu, F.B. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 2010, 121, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Tamers, S.L.; Agurs-Collins, T.; Dodd, K.W.; Nebeling, L. US and France adult fruit and vegetable consumption patterns: An international comparison. Eur. J. Clin. Nutr. 2009, 63, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Tapsell, L.C.; Dunning, A.; Warensjo, E.; Lyons-Wall, P.; Dehlsen, K. Effects of vegetables consumption on weight loss: A review of the evidence with implications for design of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2014, 54, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Mohr, P.; Wilson, C.; Dunn, K.; Brindal, E.; Wittert, G. Personal and lifestyle characteristics predictive of the consumption of fast foods in Australia. Public Health Nutr. 2007, 10, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.M.; Nguyen, B.T.; Han, E. Energy Intake from restaurants: Demographics and socioeconomics, 2003–2008. Am. J. Prev. Med. 2012, 43, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Kartashov, A.; Ebbeling, C.B.; van Horn, L.; Slattery, M.L.; Jacobs, D.R., Jr.; Ludwig, D.S. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet 2005, 365, 36–42. [Google Scholar] [CrossRef]
- Smith, K.J.; Blizzard, L.; McNaughton, S.A.; Gall, S.L.; Dwyer, T.; Venn, A.J. Takeaway food consumption and cardio-metabolic risk factors in young adults. Eur. J. Clin. Nutr. 2012, 66, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Nago, E.S.; Lachat, C.K.; Dossa, R.A.; Kolsteren, P.W. Association of out-of-home eating with anthropometric changes: A systematic review of prospective studies. Crit. Rev. Food Sci. Nutr. 2014, 54, 1103–1116. [Google Scholar] [CrossRef] [PubMed]
- Han, E.; Powell, L.M. Consumption patterns of sugar-sweetened beverages in the United States. J. Acad. Nutr. Diet. 2013, 113, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.M.; Micha, R.; Khatibzadeh, S.; Shi, P.; Lim, S.; Andrews, K.G.; Engell, R.E.; Ezzati, M.; Mozaffarian, D. Global, Regional, and National consumption of sugar-sweetened beverages, fruit juices and milk: A systematic assessment of beverage intake in 187 countries. PLoS ONE 2015, 10, e0124845. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Giskes, K.; Turrell, G. Contribution of take-out food consumption to socioeconomic differences in fruit and vegetable intake: A mediation analysis. J. Am. Diet. Assoc. 2011, 111, 1556–1562. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Gray, A.R.; Fleming, E.A.; Parnell, W.R. Characteristics of fast-food/takeaway-food and restaurant/café-food consumers among New Zealand adults. Public Health Nutr. 2014, 17, 2368–2377. [Google Scholar] [CrossRef] [PubMed]
- Fung, M.D.T.; Canning, K.L.; Mirdamadi, P.; Ardern, C.I.; Kuk, J.L. Lifestyle and weight predictors of a healthy overweight profile over a 20-year follow-up. Obesity 2015, 23, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Steffen, L.M.; van Horn, L.; Daviglus, M.L.; Zhou, X.; Reis, J.P.; Loria, C.M.; Jacobs, D.R.; Duffey, K.J. A modified Mediterranean diet score is associated with a lower risk of incident metabolic syndrome over 25 years among young adults: The CARDIA (Coronary Artery Risk Development In young Adults) study. Br. J. Nutr. 2014, 112, 1654–1661. [Google Scholar] [CrossRef] [PubMed]
- Di Noia, J.; Prochaska, J.O. Dietary stages of change and decisional balance: A meta-analytic review. Am. J. Health Behav. 2010, 34, 618–632. [Google Scholar] [CrossRef] [PubMed]
- Nitzke, S.; Kritsch, K.; Boeckner, L.; Greene, G.; Hoerr, S.; Horacek, T.; Kattelmann, K.; Lohse, B.; Oakland, M.J.; Beatrice, P.; White, A. A stage-tailored multi-modal intervention increases fruit and vegetable intakes of low-income young adults. Am. J. Health Promot. 2007, 22, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Kattelmann, K.K.; Bredbenner, C.B.; White, A.A.; Greene, G.W.; Hoerr, S.L.; Kidd, T.; Colby, S.; Horacek, T.M.; Phillips, B.W.; Koenings, M.M.; et al. The effects of Young Adults Eating and Active for Health (YEAH): A theory-based Web-delivered intervention. J. Nutr. Educ. Behav. 2014, 46, S27–S41. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.; O’Leary, F.; Allman-Farinelli, M. Behavioural and cognitive processes adults use to change their fruit and vegetable consumption. Nutr. Diet. 2014. [Google Scholar] [CrossRef]
- Wyker, B.A.; Davison, K.K. Behavioral change theories can inform the prediction of young adults’ adoption of a plant-based diet. J. Nutr. Educ. Behav. 2010, 42, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Hattersley, L.; Irwin, M.; King, L.; Allman-Farinelli, M.A. Determinants and patterns of soft drink consumption in young adults: A qualitative analysis. Public Health Nutr. 2009, 12, 1816–1822. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, F.; Hattersley, L.; King, L.; Allman-Farinelli, M. Sugary drink consumption behaviours among young adults at university. Nutr. Diet. 2012, 13, 692–710. [Google Scholar] [CrossRef]
- Hackman, C.L.; Knowlden, A.P. Theory of reasoned action and theory of planned behaviour-based dietary interventions in adolescents and young adults: A systematic review. Adolesc. Health Med. Ther. 2014, 5, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Poobalan, A.S.; Aucott, L.S.; Clarke, A.; Smith, W.C. Diet behaviour among young people in transition to adulthood (18–25 year olds): A mixed method study. Health Psychol. Behav. Med. 2014, 2, 909–928. [Google Scholar] [CrossRef] [PubMed]
- Kvaavik, E.; Lien, N.; Tell, G.S.; Klepp, K.I. Psychosocial predictors of eating habits among adults in their mid-30s: The Oslo Youth Study follow-up 1991–1999. Int. J. Behav. Nutr. Phys. Act. 2005. [Google Scholar] [CrossRef] [PubMed]
- Hebden, L.; Chey, T.; Allman-Farinelli, M. Lifestyle intervention for preventing weight gain in young adults: A systematic review and meta-analysis of RCTs. Obes. Rev. 2012, 13, 692–710. [Google Scholar] [CrossRef] [PubMed]
- Laska, M.N.; Pelletier, J.E.; Larson, N.I.; Story, M. Interventions for weight gain prevention during the transition to young adulthood: A review of the literature. J. Adolesc. Health 2012, 50, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Partridge, S.R.; Juan, S.J.; McGeechan, K.; Bauman, A.; Allman-Farinelli, M. Poor quality of external validity reporting limits generalizability of overweight and/or obesity lifestyle prevention interventions in young adults: A systematic review. Obes. Rev. 2015, 16, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Lytle, L.A.; Svetkey, L.P.; Patrick, K.; Belle, S.H.; Fernandez, I.D.; Jakicic, J.M.; Johnson, K.C.; Olson, C.M.; Tate, D.F.; Wing, R.; et al. The EARLY trials: A consortium of studies targeting weight control in young adults. Transl. Behav. Med. 2014, 4, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Hebden, L.; Balestracci, K.; McGeechan, K.; Denney-Wilson, E.; Harris, M.; Bauman, A.; Allman-Farinelli, M. “TXT2BFiT” a mobile phone-based healthy lifestyle program for preventing unhealthy weight gain in young adults: Study protocol for a randomized controlled trial. Trials 2013. [Google Scholar] [CrossRef] [PubMed]
- Kerr, D.A.; Pollard, C.M.; Howat, P.; Delp, E.J.; Pickering, M.; Kerr, K.R.; Dhaliwal, S.S.; Pratt, I.S.; Wright, J.; Boushey, C.J. Connecting Health and Technology (CHAT): Protocol of a randomized controlled trial to improve nutrition behaviours using mobile devices and tailored text messaging in young adults. Public Health 2012. [Google Scholar] [CrossRef] [PubMed]
- Hutchesson, M. Evaluating a Weight Loss Program for Young Women Delivered Using Technology: Be Positive Be Healthe. Available online: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=368150 (accessed on 18 April 2015).
- Share, B. The Young Women’s Heart Health Study: The Effects of a Lifestyle Intervention on Cardiovascular Disease Risk Factors in Overweight Women Aged 18-30 Years. Available online: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=363050 (accessed on 18 April 2015).
- Partridge, S.R.; McGeechan, K.; Hebden, L.; Balestracci, K.; Wong, A.; Denney-Wilson, E.; Harris, M.F.; Phongsavan, P.; Bauman, A.; Allman-Farinelli, M. Effectiveness of a mhealth lifestyle program with telephone support (TXT2BFiT) prevents unhealthy weight gain in young adults: Randomised controlled trial. JMIR MHealth UHealth 2015. [Google Scholar] [CrossRef] [PubMed]
- Share, B.L.; Naughton, G.A.; Obert, P.; Peat, J.K.; Aumund, E.A.; Kemp, J.G. Effects of a multidisciplinary lifestyle intervention on cardiometabolic risk factors in young women with abdominal obesity: A randomized controlled trial. PLoS ONE 2015, 10, e0130270. [Google Scholar] [CrossRef] [PubMed]
- Kelly, N.R.; Mazzeo, S.E.; Bean, M.K. Systematic review of dietary interventions with college students: Directions for future research and practice. J. Nutr. Educ. Behav. 2013, 45, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Siopis, G.; Chey, T.; Allman-Farinelli, M. A systematic review and meta-analysis of interventions for weight management using text messaging. J. Hum. Nutr. Diet. 2015, 28, S1–S15. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.; Bosworth, H. Short message service (SMS) text messaging as an intervention medium for weight loss: A literature review. Health Inform. J. 2012, 18, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Hebden, L.; Cook, A.; van der Ploegg, H.; Allman-Farinelli, M. Development of smartphone applications for nutrition and physical activity behaviour change. J. Med. Internet Res. Protoc. 2012. [Google Scholar] [CrossRef]
- Mobile Technology Fact Sheets. Available online: http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/ (accessed on 19 January 2015).
- Grech, A.; Allman-Farinelli, M. A systematic literature review of nutrition interventions in vending machines that encourage consumers to make healthier choices. Obes. Rev. 2015, in press. [Google Scholar]
- Hoefkens, C.; Pieniak, Z.; van Camp, J.; Verbeke, W. Explaining the effects of a point-of-purchase nutrition-information intervention in university canteens: A structural equation modelling analysis. Int. J. Behav. Nutr. Phys. Act. 2012. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, S.E.; Cooper, M.; Mansfield, E.D. The influence of menu labelling on calories selected or consumed: A systematic review and meta-analysis. J. Acad. Nutr. Diet. 2014, 114, 1375–1388. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.M.; Chriqui, J.F.; Khan, T.; Wada, R.; Chaloupka, F.J. Assessing the potential effectiveness of food and beverage taxes and subsidies for improving public health: A systematic review of prices, demand and body weight outcomes. Obes. Rev. 2013, 14, 110–128. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.K.; Abbott, G.; Thornton, L.E.; Worsley, A.; Ball, K.; Crawford, D. Improving perceptions of healthy food affordability: Results from a pilot intervention. Int. J. Behav. Nutr. Phys. Act. 2014. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.; Yaroch, A.L.; Serdula, M.; Blanck, H.M.; Khan, L.K. Impact of nutrition environmental interventions on point-of-purchase behavior in adults: A review. Prev. Med. 2004, 39, S108–S136. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Kelly, B.; Rangan, A.; Allman-Farinelli, M. Food environment interventions to improve the dietary behavior of young adults in tertiary education settings: A systematic literature review. J. Acad. Nutr. Diet. 2015. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.; Hayes, R. Counting calories: Resident perspectives on calorie labelling in New York City. J. Nutr. Educ. Behav. 2012, 44, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Lucan, S.C. Concerning limitations of food-environment research: A narrative review and commentary framed around obesity and diet-related diseases in youth. J. Acad. Nutr. Diet. 2015, 115, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.J.; Trost, S.G. Life transitions and changing physical activity patterns in young women. Am. J. Prev. Med. 2003, 25, 140–143. [Google Scholar] [CrossRef]
- Kjonniksen, L.; Torsheim, T.; Wold, B. Tracking of leisure-time physical activity during adolescence and young adulthood: A 10-year longitudinal study. Int. J. Behav. Nutr. Phys. Act. 2008. [Google Scholar] [CrossRef] [PubMed]
- Kao, M.J.; Jaroz, R.; Goldin, M.; Patel, A.; Smuck, M. Determinants of physical activity in America: A First characterization of physical activity profile using the National Health and Nutrition Examintaion Survey (NHANES). PMR 2014, 6, 882–892. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allman-Farinelli, M.A. Nutrition Promotion to Prevent Obesity in Young Adults. Healthcare 2015, 3, 809-821. https://doi.org/10.3390/healthcare3030809
Allman-Farinelli MA. Nutrition Promotion to Prevent Obesity in Young Adults. Healthcare. 2015; 3(3):809-821. https://doi.org/10.3390/healthcare3030809
Chicago/Turabian StyleAllman-Farinelli, Margaret A. 2015. "Nutrition Promotion to Prevent Obesity in Young Adults" Healthcare 3, no. 3: 809-821. https://doi.org/10.3390/healthcare3030809
APA StyleAllman-Farinelli, M. A. (2015). Nutrition Promotion to Prevent Obesity in Young Adults. Healthcare, 3(3), 809-821. https://doi.org/10.3390/healthcare3030809
