Tunable Topological Beam Splitter in Superconducting Circuit Lattice
Abstract
1. Introduction
2. Model and Hamiltonian
3. Tunable Topological Beam Splitter
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045. [Google Scholar] [CrossRef]
- Qi, X.L.; Zhang, S.C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057. [Google Scholar] [CrossRef]
- Chiu, C.K.; Teo, J.C.; Schnyder, A.P.; Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 2016, 88, 035005. [Google Scholar] [CrossRef]
- Bansil, A.; Lin, H.; Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 2016, 88, 021004. [Google Scholar] [CrossRef]
- Matsuura, S.; Ryu, S. Momentum space metric, nonlocal operator, and topological insulators. Phys. Rev. B 2010, 82, 245113. [Google Scholar] [CrossRef]
- Wray, L.A.; Xu, S.Y.; Xia, Y.; Hsieh, D.; Fedorov, A.V.; SanHor, Y.; Cava, R.J.; Bansil, A.; Lin, H.; Hasan, M.Z. A topological insulator surface under strong coulomb, magnetic and disorder perturbations. Nat. Phys. 2011, 7, 32. [Google Scholar] [CrossRef]
- Malki, M.; Uhrig, G. Tunable edge states and their robustness towards disorder. Phys. Rev. B 2017, 95, 235118. [Google Scholar] [CrossRef]
- Xiao, L.; Zhan, X.; Bian, Z.; Wang, K.; Zhang, X.; Wang, X.; Li, J.; Mochizuki, K.; Kim, D.; Kawakami, N.; et al. Observation of topological edge states in parity–time-symmetric quantum walks. Nat. Phys. 2017, 13, 1117–1123. [Google Scholar] [CrossRef]
- Bonderson, P.; Nayak, C. Quasi-topological phases of matter and topological protection. Phys. Rev. B 2013, 87, 195451. [Google Scholar] [CrossRef]
- Paananen, T.; Dahm, T. Magnetically robust topological edge states and flat bands. Phys. Rev. B 2013, 87, 195447. [Google Scholar] [CrossRef]
- Yong, J.; Jiang, Y.; Usanmaz, D.; Curtarolo, S.; Zhang, X.; Li, L.; Pan, X.; Shin, J.; Takeuchi, I.; Greene, R.L. Robust topological surface state in kondo insulator smb6 thin films. Appl. Phys. Lett. 2014, 105, 222403. [Google Scholar] [CrossRef]
- Takagaki, Y.; Giussani, A.; Perumal, K.; Calarco, R.; Friedland, K.J. Robust topological surface states in Sb2Te3 layers as seen from the weak antilocalization effect. Phys. Rev. B 2012, 86, 125137. [Google Scholar] [CrossRef]
- Alicea, J.; Oreg, Y.; Refael, G.; VonOppen, F.; Fisher, M.P. Non-abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 2011, 7, 412. [Google Scholar] [CrossRef]
- Duclos-Cianci, G.; Poulin, D. Fast decoders for topological quantum codes. Phys. Rev. Lett. 2010, 104, 050504. [Google Scholar] [CrossRef]
- Bonderson, P.; Lutchyn, R.M. Topological quantum buses: Coherent quantum information transfer between topological and conventional qubits. Phys. Rev. Lett. 2011, 106, 130505. [Google Scholar] [CrossRef]
- Kim, I.H. Long-range entanglement is necessary for a topological storage of quantum information. Phys. Rev. Lett. 2013, 111, 080503. [Google Scholar] [CrossRef]
- Parto, M.; Wittek, S.; Hodaei, H.; Harari, G.; Bandres, M.A.; Ren, J.; Rechtsman, M.C.; Segev, M.; Christodoulides, D.N.; Khajavikhan, M. Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett. 2018, 120, 113901. [Google Scholar] [CrossRef]
- Qiao, J.; Zhao, S.; Yang, K.; Song, W.H.; Qiao, W.; Wu, C.L.; Zhao, J.; Li, G.; Li, D.; Li, T.; et al. High-quality 2-μm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators. Photon. Res. 2018, 6, 314–320. [Google Scholar] [CrossRef]
- Pilozzi, L.; Conti, C. Topological lasing in resonant photonic structures. Phys. Rev. B 2016, 93, 195317. [Google Scholar] [CrossRef]
- Bandres, M.A.; Wittek, S.; Harari, G.; Parto, M.; Ren, J.; Segev, M.; Christodoulides, D.N.; Khajavikhan, M. Topological insulator laser: Experiments. Science 2018, 359, eaar4005. [Google Scholar] [CrossRef]
- Harari, G.; Bandres, M.A.; Lumer, Y.; Rechtsman, M.C.; Chong, Y.D.; Khajavikhan, M.; Christodoulides, D.N.; Segev, M. Topological insulator laser: Theory. Science 2018, 359, eaar4003. [Google Scholar] [CrossRef] [PubMed]
- Knitter, S.; Liew, S.F.; Xiong, W.; Guy, M.I.; Solomon, G.S.; Cao, H. Topological defect lasers. J. Opt. 2015, 18, 014005. [Google Scholar] [CrossRef]
- Sobon, G. Mode-locking of fiber lasers using novel two-dimensional nanomaterials: Graphene and topological insulators [invited]. Photon. Res. 2015, 3, A56–A63. [Google Scholar] [CrossRef]
- Dlaska, C.; Vermersch, B.; Zoller, P. Robust quantum state transfer via topologically protected edge channels in dipolar arrays. Quantum Sci. Technol. 2017, 2, 015001. [Google Scholar] [CrossRef]
- Mei, F.; Chen, G.; Tian, L.; Zhu, S.L.; Jia, S. Robust quantum state transfer via topological edge states in superconducting qubit chains. Phys. Rev. A 2018, 98, 012331. [Google Scholar] [CrossRef]
- Leijnse, M.; Flensberg, K. Quantum information transfer between topological and spin qubit systems. Phys. Rev. Lett. 2011, 107, 210502. [Google Scholar] [CrossRef]
- Ni, R.; Niu, Y.; Du, L.; Hu, X.; Zhang, Y.; Zhu, S. Topological charge transfer in frequency doubling of fractional orbital angular momentum state. Appl. Phys. Lett. 2016, 109, 151103. [Google Scholar] [CrossRef]
- Kraus, Y.E.; Lahini, Y.; Ringel, Z.; Verbin, M.; Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 2012, 109, 106402. [Google Scholar] [CrossRef]
- Tangpanitanon, J.; Bastidas, V.M.; Al-Assam, S.; Roushan, P.; Jaksch, D.; Angelakis, D.G. Topological pumping of photons in nonlinear resonator arrays. Phys. Rev. Lett. 2016, 117, 213603. [Google Scholar] [CrossRef]
- Linder, J.; Tanaka, Y.; Yokoyama, T.; Sudbø, A.; Nagaosa, N. Unconventional superconductivity on a topological insulator. Phys. Rev. Lett. 2010, 104, 067001. [Google Scholar] [CrossRef]
- Papić, Z.; Bernevig, B.A.; Regnault, N. Topological entanglement in abelian and non-abelian excitation eigenstates. Phys. Rev. Lett. 2011, 106, 056801. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.B. Dirac, majorana, and weyl fermions. Am. J. Phys. 2011, 79, 485–498. [Google Scholar] [CrossRef]
- Beenakker, C. Search for majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 2013, 4, 113–136. [Google Scholar] [CrossRef]
- Lutchyn, R.M.; Sau, J.D.; Sarma, S.D. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 2010, 105, 077001. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Fujimoto, S. Topological phases of noncentrosymmetric superconductors: Edge states, majorana fermions, and non-abelian statistics. Phys. Rev. B 2009, 79, 094504. [Google Scholar] [CrossRef]
- Sarma, S.D.; Freedman, M.; Nayak, C. Majorana zero modes and topological quantum computation. NPJ Quantum Inf. 2015, 1, 15001. [Google Scholar] [CrossRef]
- Stern, A.; Lindner, N.H. Topological quantum computation from basic concepts to first experiments. Science 2013, 339, 1179–1184. [Google Scholar] [CrossRef]
- Aasen, D.; Hell, M.; Mishmash, R.V.; Higginbotham, A.; Danon, J.; Leijnse, M.; Jespersen, T.S.; Folk, J.A.; Marcus, C.M.; Flensberg, K.; et al. Milestones toward majorana-based quantum computing. Phys. Rev. X 2016, 6, 031016. [Google Scholar] [CrossRef]
- Tewari, S.; Sarma, S.D.; Nayak, C.; Zhang, C.; Zoller, P. Quantum computation using vortices and majorana zero modes of a px+ipy superfluid of fermionic cold atoms. Phys. Rev. Lett. 2007, 98, 010506. [Google Scholar] [CrossRef]
- Kivelson, S.; Heim, D. Hubbard versus peierls and the Su-Schrieffer-Heeger model of polyacetylene. Phys. Rev. B 1982, 26, 4278. [Google Scholar] [CrossRef]
- Fradkin, E.; Hirsch, J.E. Phase diagram of one-dimensional electron-phonon systems. i. the Su-Schrieffer-Heeger model. Phys. Rev. B 1983, 27, 1680. [Google Scholar] [CrossRef]
- Meier, E.J.; An, F.A.; Gadway, B. Observation of the topological soliton state in the Su–Schrieffer–Heeger model. Nat. Commun. 2016, 7, 13986. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xu, Z.; Chen, S. Topological phases of generalized Su-Schrieffer-Heeger models. Phys. Rev. B 2014, 89, 085111. [Google Scholar] [CrossRef]
- DiLiberto, M.; Recati, A.; Carusotto, I.; Menotti, C. Two-body physics in the Su-Schrieffer-Heeger model. Phys. Rev. A 2016, 94, 062704. [Google Scholar] [CrossRef]
- Lieu, S. Topological phases in the non-hermitian Su-Schrieffer-Heeger model. Phys. Rev. B 2018, 97, 045106. [Google Scholar] [CrossRef]
- Capone, M.; Stephan, W.; Grilli, M. Small-polaron formation and optical absorption in Su-Schrieffer-Heeger and holstein models. Phys. Rev. B 1997, 56, 4484. [Google Scholar] [CrossRef]
- Asbóth, J.K.; Oroszlány, L.; Pályi, A. The su-schrieffer-heeger (SSH) model. In A Short Course on Topological Insulators; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–22. [Google Scholar]
- Grusdt, F.; Höning, M.; Fleischhauer, M. Topological edge states in the one-dimensional superlattice Bose-Hubbard model. Phys. Rev. Lett. 2013, 110, 260405. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Wang, G.L.; Liu, S.; Zhang, S.; Wang, H.F. Controllable photonic and phononic topological state transfers in a small optomechanical lattice. Opt. Lett. 2020, 45, 2018–2021. [Google Scholar] [CrossRef]
- Rice, M.J.; Mele, E.J. Elementary excitations of a linearly conjugated diatomic polymer. Phys. Rev. Lett. 1982, 49, 1455–1459. [Google Scholar] [CrossRef]
- Qi, L.; Wang, G.L.; Liu, S.; Zhang, S.; Wang, H.F. Engineering the topological state transfer and topological beam splitter in an even-sized Su-Schrieffer-Heeger chain. Phys. Rev. A 2020, 102, 022404. [Google Scholar] [CrossRef]
- Schmidt, S.; Koch, J. Circuit QED lattices: Towards quantum simulation with superconducting circuits. Ann. Phys. 2013, 525, 395–412. [Google Scholar] [CrossRef]
- Manucharyan, V.E.; Koch, J.; Glazman, L.I.; Devoret, M.H. Fluxonium: Single cooper-pair circuit free of charge offsets. Science 2009, 326, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Manucharyan, V.E.; Masluk, N.A.; Kamal, A.; Koch, J.; Glazman, L.I.; Devoret, M.H. Evidence for coherent quantum phase slips across a josephson junction array. Phys. Rev. B 2012, 85, 024521. [Google Scholar] [CrossRef]
- Begum, S.; Fleurov, V.; Kagalovsky, V.; Yurkevich, I.V. Sliding Luttinger liquid with alternating interwire couplings. J. Phys. Condens. Matter 2019, 31, 425601. [Google Scholar] [CrossRef] [PubMed]
- Jonckheere, T.; Rech, J.; Zazunov, A.; Egger, R.; Martin, T. Hanbury brown and twiss noise correlations in a topological superconductor beam splitter. Phys. Rev. B 2017, 95, 054514. [Google Scholar] [CrossRef]
- Wang, X.S.; Su, Y.; Wang, X.R. Topologically protected unidirectional edge spin waves and beam splitter. Phys. Rev. B 2017, 95, 014435. [Google Scholar] [CrossRef]
- Schonbrun, E.; Wu, Q.; Park, W.; Yamashita, T.; Summers, C.J. Polarization beam splitter based on a photonic crystal heterostructure. Opt. Lett. 2006, 31, 3104–3106. [Google Scholar] [CrossRef]
- Maxwell, D.; Szwer, D.J.; Paredes-Barato, D.; Busche, H.; Pritchard, J.D.; Gauguet, A.; Weatherill, K.J.; Jones, M.P.A.; Adams, C.S. Storage and control of optical photons using rydberg polaritons. Phys. Rev. Lett. 2013, 110, 103001. [Google Scholar] [CrossRef]
- Yanik, M.F.; Fan, S. Dynamic photon storage. Nat. Phys. 2007, 3, 372–374. [Google Scholar] [CrossRef]
- Takesue, H.; Nam, S.W.; Zhang, Q.; Hadfield, R.H.; Honjo, T.; Tamaki, K.; Yamamoto, Y. Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors. Nat. Photonics 2007, 1, 343–348. [Google Scholar] [CrossRef]
- Ball, P.; Braun, V.; Kivel, N. Photon distribution amplitudes in QCD. Nucl. Phys. B 2003, 649, 263–296. [Google Scholar] [CrossRef]
- Rosenfeld, W.; Berner, S.; Volz, J.; Weber, M.; Weinfurter, H. Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 2007, 98, 050504. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.P.; Deyanova, Y.; Torner, L.; Molina-Terriza, G. Preparation of engineered two-photon entangled states for multidimensional quantum information. Phys. Rev. A 2003, 67, 052313. [Google Scholar] [CrossRef]
- Yuce, C. Robust bulk states. Phys. Lett. A 2019, 383, 1791–1794. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Xing, Y.; Zhao, X.-D.; Liu, S.; Han, X.; Cui, W.-X.; Zhang, S.; Wang, H.-F. Tunable Topological Beam Splitter in Superconducting Circuit Lattice. Quantum Rep. 2021, 3, 1-12. https://doi.org/10.3390/quantum3010001
Qi L, Xing Y, Zhao X-D, Liu S, Han X, Cui W-X, Zhang S, Wang H-F. Tunable Topological Beam Splitter in Superconducting Circuit Lattice. Quantum Reports. 2021; 3(1):1-12. https://doi.org/10.3390/quantum3010001
Chicago/Turabian StyleQi, Lu, Yan Xing, Xue-Dong Zhao, Shutian Liu, Xue Han, Wen-Xue Cui, Shou Zhang, and Hong-Fu Wang. 2021. "Tunable Topological Beam Splitter in Superconducting Circuit Lattice" Quantum Reports 3, no. 1: 1-12. https://doi.org/10.3390/quantum3010001
APA StyleQi, L., Xing, Y., Zhao, X.-D., Liu, S., Han, X., Cui, W.-X., Zhang, S., & Wang, H.-F. (2021). Tunable Topological Beam Splitter in Superconducting Circuit Lattice. Quantum Reports, 3(1), 1-12. https://doi.org/10.3390/quantum3010001