Next Issue
Volume 2, March
Previous Issue
Volume 1, September
 
 

Biomass, Volume 1, Issue 2 (December 2021) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 2851 KiB  
Article
Species and Fatty Acid Diversity of Desmodesmus (Chlorophyta) in a Local Japanese Area and Identification of New Docosahexaenoic Acid-Producing Species
by Mikihide Demura, Seiji Noma and Nobuyuki Hayashi
Biomass 2021, 1(2), 105-118; https://doi.org/10.3390/biomass1020008 - 6 Dec 2021
Cited by 6 | Viewed by 3295
Abstract
Desmodesmus is a green microalgal genus that is frequently found in aquatic environments. Its high biomass productivity and potential as a source of lipids have attracted considerable attention. Although Desmodesmus is ubiquitous, it is difficult to identify; even within a small area, the [...] Read more.
Desmodesmus is a green microalgal genus that is frequently found in aquatic environments. Its high biomass productivity and potential as a source of lipids have attracted considerable attention. Although Desmodesmus is ubiquitous, it is difficult to identify; even within a small area, the diversity of the species and the fatty acids they produce are unknown. In this study, we performed scanning electron microscopy (SEM) and analyzed the genetic diversity of the internal transcribed spacer (ITS) region to accurately identify Desmodesmus in a local area of Japan (Saga City, Saga Pref.) and to assess its existence as a biological resource. In addition, we analyzed the fatty acid composition and content of the newly established strains. In total, 10 new strains were established, and 9 previously described species were identified. The presence of a cosmopolitan species indicated the global distribution of Desmodesmus. However, only regional species were found. One strain, dSgDes-b, did not form a clear clade with any described species in the phylogenetic analysis and had a characteristic ITS2 secondary structure. The cell wall of this strain exhibited a distinctive microstructure, and it produced docosahexaenoic acid (DHA); hence, the strain was described as a new species, Desmodesmus dohacommunis Demura sp. nov. Thus, useful information regarding the use of Desmodesmus as a bioresource was provided. Full article
Show Figures

Figure 1

11 pages, 1570 KiB  
Article
A Two-Step Cultivation Strategy for High Biomass Production and Lipid Accumulation of Raphidocelis subcapitata Immobilized in Alginate Gel
by Amel Benasla and Robert Hausler
Biomass 2021, 1(2), 94-104; https://doi.org/10.3390/biomass1020007 - 2 Nov 2021
Cited by 6 | Viewed by 3102
Abstract
This work focuses on a culture strategy that combines high biomass production and lipid accumulation in the green microalgae Raphidocelis subcapitata immobilized in alginate gel in order to obtain high lipid productivity for biodiesel production. The study of the effects of nitrogen and [...] Read more.
This work focuses on a culture strategy that combines high biomass production and lipid accumulation in the green microalgae Raphidocelis subcapitata immobilized in alginate gel in order to obtain high lipid productivity for biodiesel production. The study of the effects of nitrogen and phosphorus deficiency on lipid accumulation and biomass production in immobilized microalgae showed that both conditions (N− and P−) promoted lipid accumulation in the microalgae. The lipid contents achieved under nitrogen (31.7% ± 3.2% (dcw)) and phosphorus (19.4% ± 1.9% (dcw)) deficiency conditions were higher than those obtained in the complete medium (control) (14.9% ± 1.5% (dcw)). The highest lipid productivity was recorded under nitrogen deficiency conditions (PL = 11.1 ± 1.1 mg/L/day). This indicated that nitrogen deficiency was more effective than phosphorus deficiency in terms of triggering lipid accumulation in the microalgae. However, the conditions for inducing lipid accumulation (N− or P−) resulted in slower growth. In order to address this issue and achieve high lipid productivity, a two-step culture strategy was used. Immobilized R. subcapitata was cultivated under optimal concentrations of nitrogen and phosphorus to achieve a high biomass concentration. Thereafter, the beads containing the microalgae were transferred to a culture medium under nitrogen deficiency conditions in order to induce lipid accumulation. The concentrations 1.5 g/L of NaNO3 and 20 mg/L of K2HPO4 were determined as being the optimal concentrations for growth, and they produced the highest biomass production rates (µm max = 0.233 ± 0.023 day−1 and µm max = 0.225 ± 0.022 day−1 for NaNO3 and K2HPO4, respectively) from all of the concentrations studied. With the two-step culture strategy, immobilized R. subcapitata accumulated 37.9 ± 3.8% of their dry weight in lipid and reached a lipid productivity value of PL = 40.3 ± 4.0 mg/L/day under nitrogen deficiency conditions. This value was approximately 3.6 times higher than that obtained in the direct culture of cells under nitrogen deficiency conditions (PL = 11.1 ± 1.1 mg/L/day). Full article
Show Figures

Graphical abstract

20 pages, 5718 KiB  
Review
Advance in Hydrothermal Bio-Oil Preparation from Lignocellulose: Effect of Raw Materials and Their Tissue Structures
by Libo Zhang, Xintong Dou, Zhilin Yang, Xiao Yang and Xuqiang Guo
Biomass 2021, 1(2), 74-93; https://doi.org/10.3390/biomass1020006 - 26 Oct 2021
Cited by 10 | Viewed by 3634
Abstract
The conversion of abundant forest- and agricultural-residue-based lignocellulosic materials into high-quality bio-oil by the mild hydrothermal method has great potential in the field of biomass utilization. Some excellent research on biomass hydrothermal process has been completed, including temperature, time, catalyst addition, etc. Meanwhile, [...] Read more.
The conversion of abundant forest- and agricultural-residue-based lignocellulosic materials into high-quality bio-oil by the mild hydrothermal method has great potential in the field of biomass utilization. Some excellent research on biomass hydrothermal process has been completed, including temperature, time, catalyst addition, etc. Meanwhile, some research related to the biomass raw material tissue structure has been illustrated by adopting mode components (cellulose, hemicellulose, lignin, protein, lipid, etc.) or their mixtures. The interesting fact is that although some real lignocellulose has approximate composition, their hydrothermal products and distributions show individual differences, which means the interaction within biomass raw material components tremendously affected the reaction pathway. Unfortunately, to our knowledge, there is no review article with a specific focus on the effects of raw materials and their tissue structure on the lignocellulose hydrothermal process. In this review, research progress on the effects of model and mixed cellulose/hemicellulose/lignin effects on hydrothermal products is initially summarized. Additionally, the real lignocellulosic raw materials structure effects during the thermal process are summed up. This article will inspire researchers to focus more attention on wood fiber biomass conversion into liquid fuels or high-value-added chemicals, as well as promote the development of world energy change. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop