Avalanche Photodetector Based on InAs/InSb Superlattice
Abstract
:1. Introduction
2. Results and Discussions
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Campbell, J.C. Recent Advances in Telecommunications Avalanche Photodiodes. J. Lightwave Technol. 2007, 25, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Razeghi, M. Fundamentals of Solid State Engineering; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- James, W.B.; Richard, B.; David, G.; Donald, L.; Markus, L.; Eric, C.P.; Thomas, S.; William, E.T.; Majid, Z.; Joseph, Z. Teledyne Imaging Sensors: Infrared imaging technologies for astronomy and civil space. SPIE Astron. Telesc. Instrum. 2008, 7021, 70210. [Google Scholar]
- Gehrz, R.D.; Becklin, E.E.; de Pater, I.; Lester, D.F.; Roellig, T.L.; Woodward, C.E. A new window on the cosmos: The Stratospheric Observatory for Infrared Astronomy (SOFIA). Adv. Space Res. 2009, 44, 413–432. [Google Scholar] [CrossRef]
- Ring, E.F.J.; Ammer, K. Infrared thermal imaging in medicine. Physiol. Meas. 2012, 33, R33–R46. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Li, J.; Dehzangi, A.; Razeghi, M. Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice. AIP Adv. 2020, 10, 025018. [Google Scholar] [CrossRef] [Green Version]
- Dehzangi, A.; Wu, D.; McClintock, R.; Li, J.; Razeghi, M. Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation. Appl. Phys. Lett. 2020, 116, 221103. [Google Scholar] [CrossRef]
- Kerlain, A.; Bonnouvrier, G.; Rubaldo, L.; Decaens, G.; Reibel, Y.; Abraham, P.; Rothman, J.; Mollard, L.; de Borniol, E. Performance of Mid-Wave Infrared HgCdTe e-Avalanche Photodiodes. J. Electron. Mater. 2012, 41, 2943–2948. [Google Scholar] [CrossRef]
- Rogalski, A. HgCdTe infrared detector material: History, status and outlook. Rep. Prog. Phys. 2005, 68, 2267. [Google Scholar] [CrossRef] [Green Version]
- Perrais, G.; Rothman, J.; Destefanis, G.; Chamonal, J.-P. Impulse Response Time Measurements in Hg0.7Cd0.3Te MWIR Avalanche Photodiodes. J. Electron. Mater. 2008, 37, 1261–1273. [Google Scholar] [CrossRef]
- Maddox, S.J.; Sun, W.; Lu, Z.; Nair, H.P.; Campbell, J.C.; Bank, S.R. Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping. Appl. Phys. Lett. 2012, 101, 151124. [Google Scholar] [CrossRef] [Green Version]
- Abautret, J.; Perez, J.P.; Evirgen, A.; Rothman, J.; Cordat, A.; Christol, P. Characterization of midwave infrared InSb avalanche photodiode. J. Appl. Phys. 2015, 117, 244502. [Google Scholar] [CrossRef]
- Sai-Halasz, G.A.; Tsu, R.; Esaki, L. A new semiconductor superlattice. Appl. Phys. Lett. 1977, 30, 651–653. [Google Scholar] [CrossRef]
- Wei, Y.; Razeghi, M. Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering. Phys. Rev. B 2004, 69, 085316. [Google Scholar] [CrossRef]
- Razeghi, M.; Dehzangi, A.; Wu, D.; McClintock, R.; Zhang, Y.; Durlin, Q.; Li, J.; Meng, F. Antimonite-based gap-engineered type-II superlattice materials grown by MBE and MOCVD for the third generation of infrared imagers. 2019. In Infrared Technology and Applications XLV; International Society for Optics and Photonic: Bellingham, WA, USA, 2019; Volume 11002, p. 110020G. [Google Scholar]
- Hoang, A.M.; Dehzangi, A.; Adhikary, S.; Razeghi, M. High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices. Sci. Rep. 2016, 6, 24144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razeghi, M.; Haddadi, A.; Dehzangi, A.; Chevallier, R.; Yang, T. Recent advances in InAs/InAs1-xSbx/AlAs1-xSbx gap-engineered type-II superlattice-based photodetectors. Infrared Technol. Appl. XLIII 2017, 10177, 1017705. [Google Scholar]
- Razeghi, M.; Haddadi, A.; Hoang, A.M.; Chevallier, R.; Adhikary, S.; Dehzangi, A. InAs/InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection. Appl. Phys. Lett. 2014, 105, 121104. [Google Scholar]
- Dehzangi, A.; McClintock, R.; Haddadi, A.; Wu, D.; Chevallier, R.; Razeghi, M. Type-II superlattices base visible/extended short–wavelength infrared photodetectors with a bandstructure-engineered photo–generated carrier extractor. Sci. Rep. 2019, 9, 5003. [Google Scholar] [CrossRef] [Green Version]
- Dehzangi, A.; McClintock, R.; Wu, D.; Haddadi, A.; Chevallier, R.; Razeghi, M. Extended short wavelength infrared heterojunction phototransistors based on type II superlattices. Appl. Phys. Lett. 2019, 114, 191109. [Google Scholar] [CrossRef]
- Haddadi, A.; Adhikary, S.; Dehzangi, A.; Razeghi, M. Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices. Appl. Phys. Lett. 2016, 109, 021107. [Google Scholar] [CrossRef]
- Dehzangi, A.; Haddadi, A.; Adhikary, S.; Razeghi, M. Impact of scaling base thickness on the performance of heterojunction phototransistors. Nanotechnology 2017, 28, 10LT01. [Google Scholar] [CrossRef]
- Li, J.; Dehzangi, A.; Wu, D.; McClintock, R.; Razeghi, M. Type-II superlattice-based heterojunction phototransistors for high speed applications. Infrared Phys. Technol. 2020, 108, 103350. [Google Scholar] [CrossRef]
- Winston, D.; Hayes, R. SimWindows—A New Simulator for Studying Quantum-Well Optoelectronic Devices. Compd. Semicond. 1995, 141, 747–750. [Google Scholar]
- Oguzman, I.H.; Bellotti, E.; Brennan, K.F.; Kolnik, J.; Wang, R.P.; Ruden, P.P. Theory of hole initiated impact ionization in bulk zincblende and wurtzite GaN. J. Appl. Phys. 1997, 81, 7827–7834. [Google Scholar] [CrossRef]
- Mallick, S.; Banerjee, K.; Ghosh, S.; Plis, E.; Rodriguez, J.B.; Krishna, S.; Grein, C. Ultralow noise midwave infrared InAs-GaSb strain layer superlattice avalanche photodiode. Appl. Phys. Lett. 2007, 91, 241111. [Google Scholar] [CrossRef]
- Kinch, M.; Beck, J.; Wan, C.-F.; Ma, F.; Campbell, J. HgCdTe electron avalanche photodiodes. J. Electron. Mater. 2004, 33, 630–639. [Google Scholar] [CrossRef]
- McIntyre, R.J. Multiplication noise in uniform avalanche diodes. IEEE Trans. Electron Devices 1966, ED-13, 164–168. [Google Scholar] [CrossRef]
- Capasso, F.; Won-Tien, T.; Williams, G.F. Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio. IEEE Trans. Electron Devices 1983, 30, 381–390. [Google Scholar] [CrossRef]
- Ren, M.; Maddox, S.J.; Woodson, M.E.; Chen, Y.; Bank, S.R.; Campbell, J.C. AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes. Appl. Phys. Lett. 2016, 108, 191108. [Google Scholar] [CrossRef]
- Haddadi, A.; Dehzangi, A.; Chevallier, R.; Adhikary, S.; Razeghi, M. Bias-selectable nBn dual—band long—/very long—wavelength infrared photodetectors based on InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices. Sci. Rep. 2017, 7, 3379. [Google Scholar] [CrossRef] [Green Version]
- Dehzangi, A.; Durlin, Q.; Wu, D.; McClintock, R.; Razeghi, M. Investigation of surface leakage reduction for small pitch shortwave infrared photodetectors. Semicond. Sci. Technol. 2019, 34, 06LT01. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehzangi, A.; Li, J.; Gautam, L.; Razeghi, M. Avalanche Photodetector Based on InAs/InSb Superlattice. Quantum Rep. 2020, 2, 591-599. https://doi.org/10.3390/quantum2040041
Dehzangi A, Li J, Gautam L, Razeghi M. Avalanche Photodetector Based on InAs/InSb Superlattice. Quantum Reports. 2020; 2(4):591-599. https://doi.org/10.3390/quantum2040041
Chicago/Turabian StyleDehzangi, Arash, Jiakai Li, Lakshay Gautam, and Manijeh Razeghi. 2020. "Avalanche Photodetector Based on InAs/InSb Superlattice" Quantum Reports 2, no. 4: 591-599. https://doi.org/10.3390/quantum2040041