Next Article in Journal
Defining the Individual Injury Profile of Recreational Runners: Integrating Off-Training and Subjective Factors into the Assessment of Non-Professional Athletes
Previous Article in Journal
Optimal Shooting Cadence in the Laser-Run Trial of Modern Pentathlon
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Abstract

Novel Insights for Biosurveillance of Bat-Borne Viruses †

1
Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
2
Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center—Frederick, Fort Detrick, MD 21702, USA
3
Leidos, Reston, VA 20190, USA
4
Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
5
Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
*
Author to whom correspondence should be addressed.
Presented at Viruses 2020—Novel Concepts in Virology, Barcelona, Spain, 5–7 February 2020.
Proceedings 2020, 50(1), 47; https://doi.org/10.3390/proceedings2020050047
Published: 15 June 2020
(This article belongs to the Proceedings of Viruses 2020—Novel Concepts in Virology)

Abstract

:
Bats are rich reservoirs of viruses, including several high consequence zoonoses. In this study, high throughput sequencing was used to characterize the virome through a longitudinal study of a captive colony of lesser dawn bats, species Eonycteris spelaea, in Singapore. This study utilized viral RNA extracted from swabs of four body sites per bat per timepoint. Swabs of the exterior of the bat (head and body) were used to evaluate virus populations and demonstrate utility as a sample site for future surveillance to extrapolate population-level infection. Through unbiased shotgun and target-enrichment sequencing, we identified both the known and previously unknown viruses of zoonotic relevance and defined the population persistence and temporal patterns of viruses from families that have the capacity to jump the species barrier. We observed the population persistence of three zoonotic-related viral families that are known to be associated with spillover from bats to humans: Paramyxoviridae, Reoviridae, and Coronaviridae. To our knowledge, this is the first study that combines probe-based viral enrichment with high-throughput sequencing or that creates a viral profile from multiple swab sites on individual bats and their cohorts. This work demonstrates temporal patterns of the lesser dawn bat virome, including several novel viruses. Noninvasive surveillance methods that target the body of bats not only detect viruses shed within the colony but can also represent viral populations dispersed throughout the entire colony. New knowledge of persistent viral families should inform future directions for the biosurveillance of viruses that have the potential to cross the species barrier from bats to humans or other amplifying hosts.

Share and Cite

MDPI and ACS Style

Paskey, A.C.; Ng, J.H.J.; Rice, G.K.; Chia, W.N.; Philipson, C.W.; Foo, R.J.H.; Cer, R.Z.; Long, K.A.; Lueder, M.R.; Frey, K.G.; et al. Novel Insights for Biosurveillance of Bat-Borne Viruses. Proceedings 2020, 50, 47. https://doi.org/10.3390/proceedings2020050047

AMA Style

Paskey AC, Ng JHJ, Rice GK, Chia WN, Philipson CW, Foo RJH, Cer RZ, Long KA, Lueder MR, Frey KG, et al. Novel Insights for Biosurveillance of Bat-Borne Viruses. Proceedings. 2020; 50(1):47. https://doi.org/10.3390/proceedings2020050047

Chicago/Turabian Style

Paskey, Adrian C., Justin H. J. Ng, Gregory K. Rice, Wan Ni Chia, Casandra W. Philipson, Randy J. H. Foo, Regina Z. Cer, Kyle A. Long, Matthew R. Lueder, Kenneth G. Frey, and et al. 2020. "Novel Insights for Biosurveillance of Bat-Borne Viruses" Proceedings 50, no. 1: 47. https://doi.org/10.3390/proceedings2020050047

Article Metrics

Back to TopTop