Next Article in Journal
An FPGA Platform Proposal for Real-Time Acoustic Event Detection: Optimum Platform Implementation for Audio Recognition with Time Restrictions
Previous Article in Journal
Modular Sensor Architecture for Automated Agricultural Data Collection on the Field
Article Menu
Issue 2 (ECSA-3 2016) cover image

Article Versions

Export Article

Open AccessProceedings
Proceedings 2017, 1(2), 5; doi:10.3390/ecsa-3-S6001

High Frequency Inductive Energy Harvester for the Maintenance of Electrical Assets

Department of Electrical Engineering, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
Presented at the 3rd International Electronic Conference on Sensors and Applications, 15–30 November 2016; Available online:
Author to whom correspondence should be addressed.
Published: 14 November 2016
Download PDF [913 KB, uploaded 5 July 2017]


Extracting tiny amounts of energy from non-conventional sources using Peltier cells, piezoelectrics, antennas or inductive probes has become very popular in recent years to power low-consuming sensors in IoT applications and smart grids. These energy harvesting methods rely on the continuous generation of small quantities of electrical energy scavenged from heat, vibration or electromagnetic emissions. This energy is stored in batteries or capacitors reaching low-voltage levels that cannot be used directly to power any device. In general, the voltage is boosted to more appropriate levels with a converter. Using inductive sensors to harvest energy from electrical power lines is common knowledge. Obtaining this energy from high-power low-frequency signals is currently possible and, in some cases, reliable and profitable. The aim of this paper is to evaluate the possibility of harvesting energy from extremely low-power and high-frequency events that occur in electrical assets when the insulation is damaged. These events, called partial discharges, are used in electrical maintenance to detect possible defects in the insulation. Evaluating partial discharge activity is a common protocol in all utilities that requires the use of expensive sensors and acquisition systems, and in most occasions, decommissioning the asset to connect the measuring system. The energy from these phenomena is stored in capacitors and the use of a high-frequency voltage multiplier allows to reach voltages close to 4 V. This voltage is proportional to the number of partial discharges in a certain time span. Therefore, if the number of partial discharges per time-unit has increased noticeably, the insulation has deteriorated and the asset should be decommissioned to evaluate the damages. The paper tests the possibility of using this method as an early-warning system in the maintenance of electrical assets.
Keywords: energy harvesting; condition based maintenance; inductive sensors; high frequency pulses; partial discharges energy harvesting; condition based maintenance; inductive sensors; high frequency pulses; partial discharges
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Robles, G.; Molina, J. High Frequency Inductive Energy Harvester for the Maintenance of Electrical Assets. Proceedings 2017, 1, 5.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics



[Return to top]
Proceedings EISSN 2504-3900 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top