Submesoscale Dynamics in the Gulf of Aden and the Gulf of Oman
Abstract
:1. Introduction
2. Model Set-Up and Methods
2.1. Model Set-Up
2.2. Methods
3. Results
3.1. Surface Submesoscale Dynamics
3.2. Submesoscale Fronts from Coastal Upwelling
3.3. Coastal Submesoscale Eddies
3.4. Deep Influences of Submesoscale Structures
3.5. Subsurface Submesoscale Eddies
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bower, A.S.; Hunt, H.D.; Price, J.F. Character and dynamics of the Red Sea and Persian Gulf outflows. J. Geophys. Res. Oceans 2000, 105, 6387–6414. [Google Scholar] [CrossRef]
- Pous, S.; Carton, X.; Lazure, P. Hydrology and circulation in the Strait of Hormuz and the Gulf of Oman—Results from the GOGP99 Experiment: 2. Gulf of Oman. J. Geophys. Res. Oceans 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Bower, A.S.; Johns, W.E.; Fratantoni, D.M.; Peters, H. Equilibration and circulation of Red Sea Outflow Water in the western Gulf of Aden. J. Phys. Oceanogr. 2005, 35, 1963–1985. [Google Scholar] [CrossRef] [Green Version]
- Carton, X.; L’Hegaret, P.; Baraille, R. Mesoscale variability of water masses in the Arabian Sea as revealed by ARGO floats. Ocean Sci. 2012, 8, 227–248. [Google Scholar] [CrossRef] [Green Version]
- Bower, A.S.; Furey, H.H. Mesoscale eddies in the Gulf of Aden and their impact on the spreading of Red Sea Outflow Water. Prog. Oceanogr. 2012, 96, 14–39. [Google Scholar] [CrossRef] [Green Version]
- Carton, X. Hydrodynamical modeling of oceanic vortices. Surv. Geophys. 2001, 22, 179–263. [Google Scholar] [CrossRef]
- De Marez, C.; Meunier, T.; Morvan, M.; L’Hégaret, P.; Carton, X. Study of the stability of a large realistic cyclonic eddy. Ocean Model. 2020, 146, 101540. [Google Scholar] [CrossRef]
- Al Saafani, M.; Shenoi, S.; Shankar, D.; Aparna, M.; Kurian, J.; Durand, F.; Vinayachandran, P. Westward movement of eddies into the Gulf of Aden from the Arabian Sea. J. Geophys. Res. Oceans 2007, 112. [Google Scholar] [CrossRef]
- L’Hégaret, P.; Lacour, L.; Carton, X.; Roullet, G.; Baraille, R.; Corréard, S. A seasonal dipolar eddy near Ras Al Hamra (Sea of Oman). Ocean Dyn. 2013, 63, 633–659. [Google Scholar] [CrossRef]
- Chelton, D.B.; Deszoeke, R.A.; Schlax, M.G.; El Naggar, K.; Siwertz, N. Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr. 1998, 28, 433–460. [Google Scholar] [CrossRef]
- Vic, C.; Roullet, G.; Capet, X.; Carton, X.; Molemaker, M.J.; Gula, J. Eddy-topography interactions and the fate of the Persian Gulf Outflow. J. Geophys. Res. Oceans 2015, 120, 6700–6717. [Google Scholar] [CrossRef] [Green Version]
- Vic, C.; Capet, X.; Roullet, G.; Carton, X. Western boundary upwelling dynamics off Oman. Ocean Dyn. 2017, 67, 585–595. [Google Scholar] [CrossRef] [Green Version]
- McWilliams, J.C. Submesoscale, coherent vortices in the ocean. Rev. Geophys. 1985, 23, 165–182. [Google Scholar] [CrossRef]
- D’Asaro, E.A. Generation of submesoscale vortices: A new mechanism. J. Geophys. Res. Oceans 1988, 93, 6685–6693. [Google Scholar] [CrossRef]
- Bosse, A.; Testor, P.; Mortier, L.; Prieur, L.; Taillandier, V.; d’Ortenzio, F.; Coppola, L. Spreading of Levantine Intermediate Waters by submesoscale coherent vortices in the northwestern Mediterranean Sea as observed with gliders. J. Geophys. Res. Oceans 2015, 120, 1599–1622. [Google Scholar] [CrossRef] [Green Version]
- Collins, C.A.; Margolina, T.; Rago, T.A.; Ivanov, L. Looping RAFOS floats in the California current system. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2013, 85, 42–61. [Google Scholar] [CrossRef]
- Gula, J.; Blacic, T.M.; Todd, R.E. Submesoscale coherent vortices in the Gulf Stream. Geophys. Res. Lett. 2019, 46, 2704–2714. [Google Scholar] [CrossRef]
- L’Hégaret, P.; Carton, X.; Louazel, S.; Boutin, G. Mesoscale eddies and submesoscale structures of Persian Gulf Water off the Omani coast in spring 2011. Ocean Sci. 2016, 12, 687–701. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, G.; Meschanov, S. Distribution and spreading of Red Sea Water and salt lens formation in the northwest Indian Ocean. Deep. Sea Res. Part A Oceanogr. Res. Pap. 1991, 38, 21–34. [Google Scholar] [CrossRef]
- Meschanov, S.; Shapiro, G. A young lens of Red Sea Water in the Arabian Sea. Deep. Sea Res. Part I Oceanogr. Res. Pap. 1998, 45, 1–13. [Google Scholar] [CrossRef] [Green Version]
- De Marez, C.; Carton, X.; Corréard, S.; L’Hégaret, P.; Morvan, M. Observations of a deep submesoscale cyclonic vortex in the Arabian Sea. Geophys. Res. Lett. 2020, 47, e2020GL087881. [Google Scholar] [CrossRef]
- Capet, X.; McWilliams, J.C.; Molemaker, M.J.; Shchepetkin, A. Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr. 2008, 38, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Capet, X.; McWilliams, J.C.; Molemaker, M.J.; Shchepetkin, A. Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr. 2008, 38, 44–64. [Google Scholar] [CrossRef] [Green Version]
- Capet, X.; McWilliams, J.C.; Molemaker, M.J.; Shchepetkin, A. Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr. 2008, 38, 2256–2269. [Google Scholar] [CrossRef] [Green Version]
- Molemaker, M.J.; McWilliams, J.C.; Dewar, W.K. Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr. 2015, 45, 613–629. [Google Scholar] [CrossRef]
- Gula, J.; Molemaker, M.J.; McWilliams, J.C. Submesoscale dynamics of a Gulf Stream frontal eddy in the South Atlantic Bight. J. Phys. Oceanogr. 2016, 46, 305–325. [Google Scholar] [CrossRef]
- Morvan, M.; L’Hégaret, P.; Carton, X.; Gula, J.; Vic, C.; Marez, C.d.; Sokolovskiy, M.; Koshel, K. The life cycle of submesoscale eddies generated by topographic interactions. Ocean Sci. 2019, 15, 1531–1543. [Google Scholar] [CrossRef] [Green Version]
- Morvan, M.; Carton, X.; L’Hégaret, P.; de Marez, C.; Corréard, S.; Laouzel, S. On the dynamics of an idealized bottom density current overflowing in a semi-enclosed basin: Mesoscale and submesoscale eddies generation. Geophys. Astrophys. Fluid Dyn. 2020. [Google Scholar] [CrossRef]
- McWilliams, J.C. Submesoscale currents in the ocean. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472, 20160117. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Hurlburt, H.E.; Smedstad, O.M.; Halliwell, G.R.; Hogan, P.J.; Wallcraft, A.J.; Baraille, R.; Bleck, R. The HYCOM (hybrid coordinate ocean model) data assimilative system. J. Mar. Syst. 2007, 65, 60–83. [Google Scholar] [CrossRef]
- Debreu, L.; Vouland, C.; Blayo, E. AGRIF: Adaptive grid refinement in Fortran. Comput. Geosci. 2008, 34, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Morvan, M.; L’Hégaret, P.; de Marez, C.; Carton, X.; Corréard, S.; Baraille, R. Life cycle of mesoscale eddies in the Gulf of Aden. Geophys. Astrophys. Fluid Dyn. 2020, 1–19. [Google Scholar] [CrossRef]
- Large, W.G.; McWilliams, J.C.; Doney, S.C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 1994, 32, 363–403. [Google Scholar] [CrossRef] [Green Version]
- Haynes, P.; McIntyre, M. On the conservation and impermeability theorems for potential vorticity. J. Atmos. Sci. 1990, 47, 2021–2031. [Google Scholar] [CrossRef] [Green Version]
- Gula, J.; Molemaker, M.J.; McWilliams, J.C. Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun. 2016, 7, 12811. [Google Scholar] [CrossRef]
- L’Hégaret, P.; Duarte, R.; Carton, X.; Vic, C.; Ciani, D.; Baraille, R.; Corréard, S. Mesoscale variability in the Arabian Sea from HYCOM model results and observations: Impact on the Persian Gulf Water path. Ocean Sci. 2015, 11, 667. [Google Scholar] [CrossRef] [Green Version]
- Torres, H.S.; Klein, P.; Menemenlis, D.; Qiu, B.; Su, Z.; Wang, J.; Chen, S.; Fu, L.L. Partitioning ocean motions into balanced motions and internal gravity waves: A modeling study in anticipation of future space missions. J. Geophys. Res. Oceans 2018, 123, 8084–8105. [Google Scholar] [CrossRef] [Green Version]
- Torres, H.; Klein, P.; Siegelman, L.; Qiu, B.; Chen, S.; Ubelmann, C.; Wang, J.; Menemenlis, D.; Fu, L.L. Diagnosing ocean-wave-turbulence interactions from space. Geophys. Res. Lett. 2019, 46, 8933–8942. [Google Scholar] [CrossRef]
- Hoskins, B. The role of potential vorticity in symmetric stability and instability. Q. J. R. Meteorol. Soc. 1974, 100, 480–482. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morvan, M.; Carton, X.; Corréard, S.; Baraille, R. Submesoscale Dynamics in the Gulf of Aden and the Gulf of Oman. Fluids 2020, 5, 146. https://doi.org/10.3390/fluids5030146
Morvan M, Carton X, Corréard S, Baraille R. Submesoscale Dynamics in the Gulf of Aden and the Gulf of Oman. Fluids. 2020; 5(3):146. https://doi.org/10.3390/fluids5030146
Chicago/Turabian StyleMorvan, Mathieu, Xavier Carton, Stéphanie Corréard, and Rémy Baraille. 2020. "Submesoscale Dynamics in the Gulf of Aden and the Gulf of Oman" Fluids 5, no. 3: 146. https://doi.org/10.3390/fluids5030146