Investigation of Hydrodynamically Dominated Membrane Rupture, Using Smoothed Particle Hydrodynamics–Finite Element Method
Abstract
:1. Introduction
2. Governing Equations
2.1. Fluid Phase
2.2. Solid Phase
3. Numerical Modeling
3.1. Fluid Phase
3.2. Solid Phase
3.3. Initial and Boundary Conditions
4. Grid Resolution Study
5. Code Validation
6. Results and Discussion
- membrane deformation (at this stage, instantaneous rise in water pressure causes membrane deformation) and,
- membrane rupture (the mechanism which controls the initiation and propagation of cracks).
6.1. Membrane Deformation
6.2. Membrane Rupture
6.2.1. Slow Rupture
6.2.2. Fast Rupture
7. Concluding Remarks
- The maximum deflection of the membrane occurs at its center. The deflection is also a linear function of the applied pressure difference.
- The time required to reach the final deformation of the membrane is only a function of the applied pressure difference and the effect of membrane thickness is negligible.
- The maximum plastic strain on the membrane, which is first seen at the constrained edges, move to the center of the membrane with time.
- The minimum pressure difference required for initiation of membrane rupture varies with membrane thickness but the rupturing time (referred to as critical time) is roughly the same for all membrane thicknesses.
- Simulations of the rupturing time as a function of pressure difference suggest three different rupturing modes, namely, thickness/pressure-sensitive mode (slow rupturing), mild thickness/pressure-sensitive mode (medium speed rupturing) and low thickness/pressure-sensitive mode (fast rupturing).
- Slow rupturing causes cracks in the central parts of the membrane that spreads to other areas.
- In fast rupturing, failure first occurs at the edges of the membrane and quickly detaches the membrane from the duct walls.
Author Contributions
Funding
Conflicts of Interest
References
- Takizawa, K.; Bazilevs, Y.; Tezduyar, T.E. Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch. Comput. Methods Eng. 2012, 19, 171–225. [Google Scholar] [CrossRef]
- Shahidian, A.; Hassankiadeh, A.G. Stress analysis of internal carotid artery with low stenosis level: The effect of material model and plaque geometry. J. Mech. Med. Biol. 2017, 17, 1750098. [Google Scholar] [CrossRef]
- Hedayat, M.; Asgharzadeh, H.; Borazjani, I. Platelet activation of mechanical versus bioprosthetic heart valves during systole. J. Biomech. 2017, 56, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Sharzehee, M.; Khalafvand, S.S.; Han, H.C. Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: A stability analysis. Comput. Methods Biomech. Biomed. Eng. 2018, 21, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Azar, D.; Ohadi, D.; Rachev, A.; Eberth, J.F.; Uline, M.J.; Shazly, T. Mechanical and geometrical determinants of wall stress in abdominal aortic aneurysms: A computational study. PLoS ONE 2018, 13, e0192032. [Google Scholar] [CrossRef] [PubMed]
- Asgharzadeh, H.; Asadi, H.; Meng, H.; Borazjani, I. A non-dimensional parameter for classification of the flow in intracranial aneurysms. II. Patient-specific geometries. Phys. Fluids 2019, 31, 031905. [Google Scholar] [CrossRef] [PubMed]
- Hedayat, M.; Borazjani, I. Comparison of platelet activation through hinge vs bulk flow in bileaflet mechanical heart valves. J. Biomech. 2019, 83, 280–290. [Google Scholar] [CrossRef]
- Kamakoti, R.; Shyy, W. Fluid–structure interaction for aeroelastic applications. Prog. Aerosp. Sci. 2004, 40, 535–558. [Google Scholar] [CrossRef]
- Ennis, C.J.; Botros, K.K.; Patel, C. Dynamic model for a heat exchanger tube rupture discharging a high-pressure flashing liquid into a low-pressure liquid-filled shell. J. Loss Prev. Process. Ind. 2011, 24, 111–121. [Google Scholar] [CrossRef]
- Ravaji, B.; Mashadizade, S.; Hashemi, A. Introducing optimized validated meshing system for wellbore stability analysis using 3D finite element method. J. Nat. Gas Sci. Eng. 2018, 53, 74–82. [Google Scholar] [CrossRef]
- Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 1977, 181, 375–389. [Google Scholar] [CrossRef]
- Libersky, L.D.; Petschek, A.G. Smooth particle hydrodynamics with strength of materials. In Advances in the Free-Lagrange Method including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method; Springer: Berlin/Heidelberg, Germany, 1991; pp. 248–257. [Google Scholar]
- Swegle, J.W.; Attaway, S.W.; Heinstein, M.W.; Mello, F.J.; Hicks, D.L. An Analysis of Smoothed Particle Hydrodynamics; Sandia National Labs: Albuquerque, NM, USA, 1994. [Google Scholar]
- Chen, J.S.; Pan, C.; Wu, C.T.; Liu, W.K. Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput. Methods Appl. Mech. Eng. 1996, 139, 195–227. [Google Scholar] [CrossRef]
- Randles, P.W.; Libersky, L.D. Smoothed particle hydrodynamics: Some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 1996, 139, 375–408. [Google Scholar] [CrossRef]
- Welton, W.C.; Pope, S.B. PDF model calculations of compressible turbulent flows using smoothed particle hydrodynamics. J. Comput. Phys. 1997, 134, 150–168. [Google Scholar] [CrossRef]
- Morris, J.P.; Fox, P.J.; Zhu, Y. Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 1997, 136, 214–226. [Google Scholar] [CrossRef]
- Hu, X.Y.; Adams, N.A. An incompressible multi-phase SPH method. J. Comput. Phys. 2007, 227, 264–278. [Google Scholar] [CrossRef]
- Zhu, Y.; Fox, P.J. Simulation of Pore-Scale Dispersion in Periodic Porous Media Using Smoothed Particle Hydrodynamics. J. Comput. Phys. 2002, 182, 622–645. [Google Scholar] [CrossRef]
- Liu, M.B.; Liu, G.R.; Zong, Z.; Lam, K.Y. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Comput. Fluids 2003, 32, 305–322. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Manzari, M.T.; Hannani, S.K. A fully explicit three-step SPH algorithm for simulation of non-Newtonian fluid flow. Int. J. Numer. Methods Heat Fluid Flow 2007, 17, 715–735. [Google Scholar] [CrossRef]
- Ellero, M.; Kroger, M.; Hess, S. Viscoelastic flows studied by smoothed particle hydrodynamics. J. Non-Newton. Fluid Mech. 2002, 105, 35–51. [Google Scholar] [CrossRef]
- Shao, S.; Lo, E.Y.M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour. 2003, 26, 787–800. [Google Scholar] [CrossRef]
- Hashemi, M.R.; Fatehi, R.; Manzari, M.T. SPH simulation of interacting solid bodies suspended in a shear flow of an Oldroyd-B fluid. J. Non-Newton. Fluid Mech. 2011, 166, 1239–1252. [Google Scholar] [CrossRef]
- Xu, X.; Ouyang, J. A SPH-based particle method for simulating 3D transient free surface flows of branched polymer melts. J. Non-Newton. Fluid Mech. 2013, 202, 54–71. [Google Scholar] [CrossRef]
- Fan, X.J.; Tanner, R.I.; Zheng, R. Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow. J. Non-Newton. Fluid Mech. 2010, 165, 219–226. [Google Scholar] [CrossRef]
- Ren, J.; Ouyang, J.; Jiang, T. An improved particle method for simulation of the non-isothermal viscoelastic fluid mold filling process. Int. J. Heat Mass Transf. 2015, 85, 543–560. [Google Scholar] [CrossRef]
- Venkatesan, J.; Ganesan, S. Computational modeling of impinging viscoelastic droplets. J. Non-Newton. Fluid Mech. 2019, 263, 42–60. [Google Scholar] [CrossRef]
- Maurel, B.; Combescure, A. An SPH shell formulation for plasticity and fracture analysis in explicit dynamics. Int. J. Numer. Methods Eng. 2008, 76, 949–971. [Google Scholar] [CrossRef]
- Potapov, S.; Maurel, B.; Combescure, A.; Fabis, J. Modeling accidental-type fluid–structure interaction problems with the SPH method. Comput. Struct. 2009, 87, 721–734. [Google Scholar] [CrossRef]
- Caleyron, F.; Combescure, A.; Faucher, V.; Potapov, S. SPH modeling of fluid–solid interaction for dynamic failure analysis of fluid-filled thin shells. J. Fluids Struct. 2013, 39, 126–153. [Google Scholar] [CrossRef]
- Faucher, V.; Casadei, F.; Valsamos, G.; Larcher, M. High resolution adaptive framework for fast transient fluid-structure interaction with interfaces and structural failure–Application to failing tanks under impact. Int. J. Impact Eng. 2019, 127, 62–85. [Google Scholar] [CrossRef]
- Kheirabadi, A.M.; Moosavi, A.; Akbarzadeh, A.M. Nanofluidic transport inside carbon nanotubes. J. Phys. D Appl. Phys. 2014, 47. [Google Scholar] [CrossRef]
- Asadi, H.; Asgharzadeh, H.; Borazjani, I. On the scaling of propagation of periodically generated vortex rings. J. Fluid Mech. 2018, 853, 150–170. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Borazjani, I. A numerical study on controlling flow separation via surface morphing in the form of backward traveling waves. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019; p. 3589. [Google Scholar]
- Asadi, H. Two-Dimensional Numerical Investigation of Oscillatory Shear-Driven Flows in Slip Flow Regime between Two Microscale Concentric Cylinders. Appl. Mech. Mater. 2014, 704, 299–304. [Google Scholar] [CrossRef]
- Akbarzadeh, A.M.; Moosavi, A.; Kheirabadi, A.M. Dewetting of evaporating thin films over nanometer-scale topographies. Phys. Rev. E 2014, 90, 012409. [Google Scholar] [CrossRef]
- Monaghan, J.J.; Cas, R.A.; Kos, A.M.; Hallworth, M. Gravity currents descending a ramp in a stratified tank. J. Fluid Mech. 1999, 379, 39–69. [Google Scholar] [CrossRef]
- Liu, M.B.; Liu, G.R. Smoothed Particle Hydrodynamics (SPH): An Overview and Recent Developments. Arch. Comput. Methods Eng. 2010, 17, 25–76. [Google Scholar] [CrossRef]
- Liu, G.R.; Liu, M.B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method; World Scientific: Singapore, 2003. [Google Scholar]
- Shadloo, M.S.; Oger, G.; Touzé, D.L. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Comput. Fluids 2016, 136, 11–34. [Google Scholar] [CrossRef]
- Gray, J.P.; Monaghan, J.J.; Swift, R.P. SPH elastic dynamics. Comput. Methods Appl. Mech. Eng. 2001, 190, 6641–6662. [Google Scholar] [CrossRef]
- Monaghan, J.J.; Gingold, R.A. Shock simulation by the particle method SPH. J. Comput. Phys. 1983, 52, 374–389. [Google Scholar] [CrossRef]
- Lemaitre, J.; Chaboche, J.L. Mechanics of Solid Materials; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Bažant, Z.P.; Belytschko, T.B. Wave Propagation in a Strain-Softening Bar: Exact Solution. J. Eng. Mech. 1985, 111, 381–389. [Google Scholar] [CrossRef]
- Needleman, A. Material rate dependence and mesh sensitivity in localization problems. Comput. Methods Appl. Mech. Eng. 1988, 67, 69–85. [Google Scholar] [CrossRef]
- Allix, O.; Deü, J.F. Delayed-damage modelling for fracture prediction of laminated composites under dynamic loading. Eng. Trans. 1997, 45, 29–46. [Google Scholar]
- EUROPLEXUS. User’s Manual. 2005. Available online: https://europlexus.jrc.ec.europa.eu (accessed on 1 August 2015).
- Caleyron, F.; Combescure, A.; Faucher, V.; Potapov, S. Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells. Int. J. Numer. Methods Eng. 2012, 90, 707–738. [Google Scholar] [CrossRef]
- Hallquist, J.O.; Goudreau, G.L.; Benson, D.J. Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput. Methods Appl. Mech. Eng. 1985, 51, 107–137. [Google Scholar] [CrossRef]
- Casadei, F.; Potapov, S. Permanent fluid–structure interaction with non-conforming interfaces in fast transient dynamics. Comput. Methods Appl. Mech. Eng. 2004, 193, 4157–4194. [Google Scholar] [CrossRef]
- Maurel, B.; Potapov, S.; Fabis, J.; Combescure, A. Full SPH fluid-shell interaction for leakage simulation in explicit dynamics. Int. J. Numer. Methods Eng. 2009, 80, 210–234. [Google Scholar] [CrossRef]
- Selvadurai, A.P.S.; Shi, M. Fluid pressure loading of a hyperelastic membrane. Int. J. Non-Linear Mech. 2012, 47, 228–239. [Google Scholar] [CrossRef]
Fluid | Density (Kg/m) | Speed of Sound (m/s) |
---|---|---|
Water | 1000 | 1450 |
Diesel Oil | 900 | 1250 |
Material | Application | Density [Kg/m] | Young’s Modulus [GPa] | Poisson’s Ratio | Elastic Limit [MPa] |
---|---|---|---|---|---|
Iron | Channel wall | 7860 | 200 | 0.33 | Not applicable |
XC 38 steel | Membrane | 7860 | 200 | 0.33 | 166.5 |
Parameter | a | ||||
---|---|---|---|---|---|
Value | 0.0 | 0.56 | 0.22 | 10 | 1 |
Element Side/Particle Radius | 5 | 2.5 | 1.25 | 0.83 | 0.65 | Relative Error (%) (Effect of Element Size) |
---|---|---|---|---|---|---|
10 | 4.72 | 6.00 | 5.74 | 5.62 | 5.37 | 4.4 |
5 | 4.61 | 5.99 | 6.38 | 6.73 | 6.53 | 3 |
2.5 | 4.33 | 5.42 | 6.66 | 7.21 | 7.10 | 1.5 |
1.66 | 4.36 | 5.09 | 6.4 | 7.16 | 7.19 | 0.4 |
Relative error (%) (effect of particle radius) | 0.7 | 6.1 | 4 | 0.7 | 1.3 | - |
Feature | Fast Rupturing | Slow Rupturing |
Initiation Time | Order of s | Order of ms |
Initiation Area | Edges | Center |
Thickness/Pressure Sensitivity | low sensitivity | Sensitive |
Destruction Level | Smaller Destruction per Area with Complete Separation from Channel Walls | High Destruction per Area without Separation from Channel Walls |
Destructive Mechanism | Pressure pulse | Steady Pressure Field Forces |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asadi, H.; Taeibi-Rahni, M.; Akbarzadeh, A.M.; Javadi, K.; Ahmadi, G. Investigation of Hydrodynamically Dominated Membrane Rupture, Using Smoothed Particle Hydrodynamics–Finite Element Method. Fluids 2019, 4, 149. https://doi.org/10.3390/fluids4030149
Asadi H, Taeibi-Rahni M, Akbarzadeh AM, Javadi K, Ahmadi G. Investigation of Hydrodynamically Dominated Membrane Rupture, Using Smoothed Particle Hydrodynamics–Finite Element Method. Fluids. 2019; 4(3):149. https://doi.org/10.3390/fluids4030149
Chicago/Turabian StyleAsadi, Hossein, Mohammad Taeibi-Rahni, Amir Mahdi Akbarzadeh, Khodayar Javadi, and Goodarz Ahmadi. 2019. "Investigation of Hydrodynamically Dominated Membrane Rupture, Using Smoothed Particle Hydrodynamics–Finite Element Method" Fluids 4, no. 3: 149. https://doi.org/10.3390/fluids4030149