Next Article in Journal
Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate
Next Article in Special Issue
Neutrality Versus Materiality: A Thermodynamic Theory of Neutral Surfaces
Previous Article in Journal / Special Issue
Eddy Backscatter and Counter-Rotating Gyre Anomalies of Midlatitude Ocean Dynamics
Article Menu

Export Article

Open AccessArticle
Fluids 2016, 1(3), 30; doi:10.3390/fluids1030030

Meridional and Zonal Wavenumber Dependence in Tracer Flux in Rossby Waves

School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
Academic Editor: Pavel S. Berloff
Received: 22 July 2016 / Revised: 26 August 2016 / Accepted: 29 August 2016 / Published: 6 September 2016
(This article belongs to the Collection Geophysical Fluid Dynamics)
View Full-Text   |   Download PDF [32306 KB, uploaded 6 September 2016]   |  

Abstract

Eddy-driven jets are of importance in the ocean and atmosphere, and to a first approximation are governed by Rossby wave dynamics. This study addresses the time-dependent flux of fluid and a passive tracer between such a jet and an adjacent eddy, with specific regard to determining zonal and meridional wavenumber dependence. The flux amplitude in wavenumber space is obtained, which is easily computable for a given jet geometry, speed and latitude, and which provides instant information on the wavenumbers of the Rossby waves which maximize the flux. This new tool enables the quick determination of which modes are most influential in imparting fluid exchange, which in the long term will homogenize the tracer concentration between the eddy and the jet. The results are validated by computing backward- and forward-time finite-time Lyapunov exponent fields, and also stable and unstable manifolds; the intermingling of these entities defines the region of chaotic transport between the eddy and the jet. The relationship of all of these to the time-varying transport flux between the eddy and the jet is carefully elucidated. The flux quantification presented here works for general time-dependence, whether or not lobes (intersection regions between stable and unstable manifolds) are present in the mixing region, and is therefore also easily computable for wave packets consisting of infinitely many wavenumbers. View Full-Text
Keywords: maximum flux; mid-latitude cyclones; oceanic jets; chaotic transport maximum flux; mid-latitude cyclones; oceanic jets; chaotic transport
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Balasuriya, S. Meridional and Zonal Wavenumber Dependence in Tracer Flux in Rossby Waves. Fluids 2016, 1, 30.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Fluids EISSN 2311-5521 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top