General Cognitive Impairment as a Risk Factor for Motor Vehicle Collision Involvement: A Prospective Population-Based Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Federal Highway Administration. Highway Statistics 2014. Available online: https://www.fhwa.dot.gov/policyinformation/statistics/2014/ (accessed on 22 January 2018).
- Federal Highway Administration. Highway Statistics 2004—FHWA. Available online: https://www.fhwa.dot.gov/policy/ohim/hs04/dl.cfm (accessed on 22 January 2018).
- Insurance Institute for Highway Safety (IIHS). Older people. Available online: http://www.iihs.org/iihs/topics/t/older-drivers/fatalityfacts/older-people/2015 (accessed on 22 January 2018).
- Rizzo, M.; Kellison, I. The brain on the road. In Neuropsychol of Everyday Functioning; Marcotte, T.D., Grant, I., Eds.; Guilford Press: New York, NY, USA, 2010; pp. 168–208. [Google Scholar]
- Langa, K.M.; Levine, D.A. The diagnosis and management of mild cognitive impairment: A clinical review. JAMA 2014, 312, 2551–2561. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.; Bryce, R.; Albanese, E.; Wimo, A.; Ribeiro, W.; Ferri, C.P. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement. 2013, 9, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Friedland, R.P.; Koss, E.; Kumar, A.; Gaine, S.; Metzler, D.; Haxby, J.V.; Moore, A. Motor vehicle crashes in dementia of the Alzheimer type. Ann. Neurol. 1988, 24, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Drachman, D.A.; Swearer, J.M.; Group, C.S. Driving and Alzheimer’s disease: The risk of crashes. Neurology 1993, 43, 2448. [Google Scholar] [CrossRef] [PubMed]
- Cooper, P.J.; Tallman, K.; Tuokko, H.; Beattie, B.L. Vehicle crash involvement and cognitive deficit in older drivers. J. Saf. Res. 1993, 24, 9–17. [Google Scholar]
- Iverson, D.; Gronseth, G.; Reger, M.; Classen, S.; Dubinsky, R.; Rizzo, M. Practice Parameter update: Evaluation and management of driving risk in dementia Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2010, 74, 1316–1324. [Google Scholar] [PubMed]
- Wadley, V.G.; Okonkwo, O.; Crowe, M.; Vance, D.E.; Elgin, J.M.; Ball, K.K.; Owsley, C. Mild cognitive impairment and everyday function: An investigation of driving performance. J. Geriatr. Psychiatry Neurol. 2009, 22, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.; Folstein, S.; McHugh, P. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Lesikar, S.E.; Gallo, J.J.; Rebok, G.W.; Keyl, P.M. Prospective study of brief neuropsychological measures to assess crash risk in older primary care patients. J. Am. Board Family Med. 2002, 15, 11–19. [Google Scholar]
- Gilley, D.W.; Wilson, R.S.; Bennett, D.A.; Stebbins, G.T.; Bernard, B.A.; Whalen, M.E.; Fox, J.H. Cessation of driving and unsafe motor vehicle operation by dementia patients. Arch. Intern. Med. 1991, 151, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Blaustein, M.J.; Filipp, L.; Dungan, C.; Tune, L. Driving in patients with dementia. J. Am. Geriatr. Soc. 1988, 36, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Trobe, J.D.; Waller, P.F.; Cook-Flannagan, C.A.; Teshima, S.M.; Bieliauskas, L.A. Crashes and violations among drivers with Alzheimer disease. Arch. Neurol. 1996, 53, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Zuin, D.; Ortiz, H.; Boromei, D.; Lopez, O.L. Motor vehicle crashes and abnormal driving behaviours in patients with dementia in Mendoza, Argentina. Eur. J. Neurol. 2002, 9, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.; Fraser, D.; Bonner, D.; Warnes, A.; Warrington, E.; Rossor, M. Dementia and driving: Results of a semi-realistic simulator study. Int. J. Geriatr. Psychiatry 1995, 10, 859–864. [Google Scholar] [CrossRef]
- Fox, G.K.; Bowden, S.C.; Bashford, G.M.; Smith, D.S. Alzheimer’s disease and driving: Prediction and assessment of driving performance. J. Am. Geriatr. Soc. 1997, 45, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Rebok, G.W.; Keyl, P.M.; Bylsma, F.W.; Blaustein, M.J.; Tune, L. The effects of Alzheimer disease on driving-related abilities. Alzheimer Dis. Assoc. Disord. 1994, 8, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Odenheimer, G.L.; Beaudet, M.; Jette, A.M.; Albert, M.S.; Grande, L.; Minaker, K.L. Performance-based driving evaluation of the elderly driver: safety, reliability, and validity. J. Gerontol. 1994, 49, M153–M159. [Google Scholar] [CrossRef] [PubMed]
- Dubinsky, R.M.; Williamson, A.; Gray, C.S.; Glatt, S.L. Driving in Alzheimer’s disease. J. Am. Geriatr. Soc. 1992, 40, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Johansson, K.; Bronge, L.; Lundberg, C.; Persson, A.; Seideman, M.; Viitanen, M. Can a physician recognize an older driver with increased crash risk potential? J. Am. Geriatr. Soc. 1996, 44, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Fitten, L.J.; Perryman, K.M.; Wilkinson, C.J.; Little, R.J.; Burns, M.M.; Pachana, N.; Mervis, J.R.; Malmgren, R.; Siembieda, D.W.; Ganzell, S. Alzheimer and vascular dementias and driving: A prospective road and laboratory study. JAMA 1995, 273, 1360–1365. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.J.; Quillian, W.C.; Thorndike, F.P.; Kovatchev, B.P.; Hanna, G. Evaluating driving performance of outpatients with Alzheimer disease. J. Am. Board Family Pract. 1998, 11, 264–271. [Google Scholar] [CrossRef]
- Owsley, C.; Ball, K.; Sloane, M.; Roenker, D.; Bruni, J. Visual/cognitive correlates of vehicle accidents in older drivers. Psychol. Aging 1991, 6, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Ball, K.; Owsley, C.; Sloane, M.; Roenker, D.; Bruni, J. Visual attention problems as a predictor of vehicle crashes in older drivers. Investig. Ophthalmol. Vis. Sci. 1993, 34, 3110–3123. [Google Scholar]
- Hunt, L.; Morris, J.C.; Edwards, D.; Wilson, B.S. Driving performance in persons with mild senile dementia of the Alzheimer type. J. Am. Geriatr. Soc. 1993, 41, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Goode, K.; Ball, K.; Sloane, M.; Roenker, D.; Roth, D.; Myers, R.; Owsley, C. Useful field of view and other neurocognitive indicators of crash risk in older adults. J. Clin. Psychol. Med. Settings 1998, 5, 425–440. [Google Scholar] [CrossRef]
- Stutts, J.C.; Stewart, J.R.; Martell, C. Cognitive test performance and crash risk in an older driver population. Accid. Anal. Prev. 1998, 30, 337–346. [Google Scholar] [CrossRef]
- Bowers, A.R.; Anastasio, R.J.; Sheldon, S.S.; O’Connor, M.G.; Hollis, A.M.; Howe, P.D.; Horowitz, T.S. Can we improve clinical prediction of at-risk older drivers? Accid. Anal. Prev. 2013, 59, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Owsley, C.; McGwin, G., Jr. Vision and driving. Vis. Res. 2010, 50, 2348–2361. [Google Scholar] [CrossRef] [PubMed]
- Gallo, J.J.; Rebok, G.W.; Lesikar, S.E. The driving habits of adults aged 60 years and older. J. Am. Geriatr. Soc. 1999, 47, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Marottoli, R.; Richardson, E.; Stowe, M.; Miller, E.; Brass, L.; Cooney, L., Jr.; Tinetti, M. Development of a test battery to identify older drivers at risk for self-reported adverse driving events. J. Am. Geriatr. Soc. 1998, 46, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Joseph, P.G.; O’donnell, M.J.; Teo, K.K.; Gao, P.; Anderson, C.; Probstfield, J.L.; Bosch, J.; Khatib, R.; Yusuf, S. The Mini-Mental State Examination, clinical factors, and motor vehicle crash risk. J. Am. Geriatr. Soc. 2014, 62, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Rubin, G.; Ng, E.; Bandeen-Roche, K.; Keyl, P.; Freeman, E.; West, S. A prospective, population-based study of the role of visual impairment in motor vehicle crashes among older drivers: The SEE study. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1483–1491. [Google Scholar] [CrossRef] [PubMed]
- Margolis, K.; Kerani, R.; McGovern, P.; Songer, T.; Cauley, J.; Ensrud, K. Risk factors for motor vehicle crashes in older women. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M186–M191. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, H.C.; Tinklenberg, J.; Yesavage, J.A. ‘How far’ vs ‘how fast’ in Alzheimer’s disease: The question revisited. Arch. Neurol. 1994, 51, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Owsley, C.; McGwin, G.; Searcey, K. A population-based examination of the visual and ophthalmological characteristics of licensed drivers aged 70 and older. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 567–573. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Owsley, C.; Ball, K.; McGwin, G.; Sloane, M.; Roenker, D.; White, M.; Overley, T. Visual processing impairment and risk of motor vehicle crash among older adults. JAMA 1998, 279, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.; Moke, P.; Turpin, A.; Ferris, F.; SanGiovanni, J.; Johnson, C.; Birch, E.; Chandler, D.; Cox, T.; Blair, R.; et al. A computerized method of visual acuity testing: Adaptation of the early treatment of diabetic retinopathy study testing protocol. Am. J. Ophthalmol. 2003, 135, 194–205. [Google Scholar] [CrossRef]
- Pelli, D.; Robson, J.; Wilkins, A. The design of a new letter chart for measuring contrast sensitivity. Clin. Vis. Sci. 1988, 2, 187–199. [Google Scholar]
- Elliott, D.; Bullimore, M.; Bailey, I. Improving the reliability of the Pelli-Robson contrast sensitivity test. Clin. Vis. Sci. 1991, 6, 471–475. [Google Scholar]
- Colarusso, R.P.; Hammill, D.D. Motor-Free Visual Perception Test; Western Psychological Services: Los Angeles, CA, USA, 1972. [Google Scholar]
- Reitan, R.M. The relationship of the Trail Making Test to organic brain damage. J. Consult. Psychol. 1955, 19, 393–394. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.; Ross, L.; Wadley, V.; Clay, O.; Crowe, M.; Roenker, D.; Ball, K. The useful field of view test: normative data for older adults. Arch. Clin. Neuropsychol. 2006, 21, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Huisingh, C.; McGwin, G.; Owsley, C. Association of visual sensory function and higher-order visual processing skills with incident driving cessation. Clin. Exp. Optom. 2016, 99, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Katzman, R.; Brown, T.; Fuld, P.; Peck, A.; Schechter, R.; Schimmel, H. Validation of a short Orientation-Memory-Concentration Test of cognitive impairment. Am. J. Psychiatry 1983, 140, 734–739. [Google Scholar] [PubMed]
- Meiran, N.; Stuss, D.T.; Guzman, D.A.; Lafleche, G.; Willmer, J. Diagnosis of dementia: Methods for interpretation of scores of 5 neuropsychological tests. Arch. Neurol. 1996, 53, 1043–1054. [Google Scholar] [CrossRef] [PubMed]
- Owsley, C.; Stalvey, B.; Wells, J.; Sloane, M.E. Older drivers and cataract: Driving habits and crash risk. J. Gerontol. A Biol. Sci. Med. Sci. 1999, 54A, M203–M211. [Google Scholar] [CrossRef]
- Nieuwenhuis-Mark, R.E. The death knoll for the MMSE: Has it outlived its purpose? J. Geriatr. Psychiatry Neurol. 2010, 23, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Howard, V.J.; Wadley, V.G.; Hutto, B.; Blair, S.N.; Vena, J.E.; Colabianchi, N.; Rhodes, D.; Hooker, S.P. Association between objectively measured physical activity and cognitive function in older adults—The Reasons for Geographic and Racial Differences in Stroke Study. J. Am. Geriatr. Soc. 2015, 63, 2447–2454. [Google Scholar] [CrossRef] [PubMed]
- Anstey, K.J.; Windsor, T.D.; Luszcz, M.A.; Andrews, G.R. Predicting driving cessation over 5 years in older adults: Psychological well-being and cognitive competence are stronger predictors than physical health. J. Am. Geriatr. Soc. 2006, 54, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, M.L.; Edwards, J.D.; Ross, L.A.; Ball, K.K.; Lunsman, M. Examination of cognitive and instrumental functional performance as indicators for driving cessation risk across 3 years. Gerontologist 2008, 48, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.S.; Simões, M.R.; Marôco, J. The Addenbrooke’s Cognitive Examination Revised as a potential screening test for elderly drivers. Accid. Anal. Prev. 2012, 49, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Owsley, C.; McGwin, G., Jr.; Ball, K. Vision impairment, eye disease, and injurious motor vehicle crashes in the elderly. Ophthalmic Epidemiol. 1998, 5, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Ball, K.; Roenker, D.; Wadley, V.; Edwards, J.; Roth, D.; McGwin, G.; Raleigh, R.; Joyce, J.; Cissell, G.; Dube, T. Can high-risk older drivers be identified through performance-based measures in a department of motor vehicles setting? J. Am. Geriatr. Soc. 2006, 54, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Friedman, C.; McGwin, G.; Ball, K.; Owsley, C. Association between higher order visual processing abilities and a history of motor vehicle collision involvement by drivers ages 70 and over. Investig. Ophthalmol. Vis. Sci. 2013, 54, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, D.; Wood, R.C.; Becho, J.; Owings, K.; Espino, D.V. Mini-Mental State Exam domains predict falls in an elderly population: Follow-up from the Hispanic Established Populations for Epidemiologic Studiesof the Elderly (H-EPESE) Study. Ethn. Dis. 2010, 20, 48–52. [Google Scholar] [PubMed]
- Tseng, W.J.; Hung, L.W.; Lin, J. Time Orientation and Visual Construction Subdomains of the MMSE as Independent Risk Factors for Hip Fractures. Orthopedics 2013, 36, e869–e876. [Google Scholar] [CrossRef] [PubMed]
- Hershkovitz, A.; Kornyukov, N.; Brill, S. Place orientation and visual construction subdomains of the Mini Mental State Examination test as predictors of rehabilitation outcome of post-acute hip-fractured patients. Disabil. Rehabil. 2017, 39, 2339–2345. [Google Scholar] [CrossRef] [PubMed]
- Molnar, F.J.; Marshall, S.C.; Man-Son-Hing, M.; Wilson, K.G.; Byszewski, A.M.; Stiell, I. Acceptability and concurrent validity of measures to predict older driver involvement in motor vehicle crashes: An emergency department pilot case–control study. Accid. Anal. Prev. 2007, 39, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Mitrushina, M.; Satz, P. Effect of repeated administration of a neuropsychological battery in the elderly. J. Clin. Psychol. 1991, 47, 790–801. [Google Scholar] [CrossRef]
- Euser, S.M.; Schram, M.T.; Hofman, A.; Westendorp, R.G.; Breteler, M.M. Measuring cognitive function with age: the influence of selection by health and survival. Epidemiology 2008, 19, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Howland, M.; Tatsuoka, C.; Smyth, K.A.; Sajatovic, M. Detecting change over time: A comparison of the SLUMS examination and the MMSE in older adults at risk for cognitive decline. CNS Neurosci. Ther. 2016, 22, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Wolinsky, F.D.; Unverzagt, F.W.; Smith, D.M.; Jones, R.; Stoddard, A.; Tennstedt, S.L. The ACTIVE cognitive training trial and health-related quality of life: protection that lasts for 5 years. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 1324–1329. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.E.; Andrieu, S.; Arbus, C.; Ceccaldi, M.; Couratier, P.; Dantoine, T.; Dartigues, J.-F.; Gillette-Guyonette, S.; Nourhashemi, F.; Ousset, P.-J. Rapid cognitive decline in Alzheimer’s disease. Consensus paper. J. Nutr. Health Aging 2008, 12, 703–713. [Google Scholar] [PubMed]
- Hemmelgarn, B.; Suissa, S.; Huang, A.; Jean-Francois, B.; Pinard, G. Benzodiazepine use and the risk of motor vehicle crash in the elderly. JAMA 1997, 278, 27–31. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Impaired 1 n = 46 | Not Impaired n = 1949 | p-Value |
---|---|---|---|
Age, years | |||
70–79 | 20 (43.5%) | 1410 (72.4%) | <0.0001 |
80–89 | 24 (52.2%) | 501 (25.7%) | |
90–98 | 2 (4.4%) | 38 (2.0%) | |
Mean, SD | 81.0 (±6.0) | 77.1 (±4.9) | <0.0001 |
Gender | |||
Male | 31 (67.4%) | 1092 (56.0%) | 0.12 |
Female | 15 (32.6%) | 857 (44.0%) | |
Race | |||
Non-White | 21 (45.7%) | 340 (17.4%) | <0.0001 |
White | 25 (54.4%) | 1610 (82.6%) | |
Education | |||
Less than high school | 23 (50.0%) | 608 (31.2%) | 0.0008 |
High school or GED | 4 (8.7%) | 47 (2.4%) | |
1–4 years of college | 13 (28.3%) | 1001 (51.4%) | |
Postgraduate degree | 6 (13.0%) | 292 (15.0%) | |
Falls in past year | |||
0 | 36 (78.3%) | 1496 (76.8%) | 0.96 |
1 | 6 (13.0%) | 284 (14.6%) | |
≥2 | 4 (8.7%) | 169 (8.7%) | |
Number of medical conditions | |||
0 | 2 (4.4%) | 80 (4.1%) | 0.30 |
1–2 | 20 (43.5%) | 617 (31.7%) | |
3–4 | 18 (39.1%) | 830 (42.6%) | |
5 or more | 6 (13.0%) | 422 (21.7%) | |
Chronic medical conditions | |||
Heart problems | 19 (41.3%) | 776 (39.8%) | 0.84 |
Circulation problems | 4 (8.7%) | 314 (16.1%) | 0.17 |
High blood pressure | 25 (54.4%) | 1281 (65.7%) | 0.11 |
Low blood pressure | 3 (6.5%) | 103 (5.3%) | 0.71 |
Neurological problems | 4 (8.7%) | 201 (10.3%) | 0.72 |
Arthritis | 27 (58.7%) | 1064 (54.6%) | 0.58 |
Osteoporosis | 2 (4.4%) | 275 (14.1%) | 0.058 |
Cancer | 8 (17.4%) | 618 (31.7%) | 0.039 |
Chronic pulmonary problems | 7 (15.2%) | 330 (16.9%) | 0.76 |
Digestive problems | 8 (17.4%) | 556 (28.5%) | 0.097 |
Urinary problems | 17 (37.0%) | 620 (31.8%) | 0.46 |
Kidney problems | 4 (8.7%) | 176 (9.0%) | 0.94 |
Hearing problems | 21 (45.7%) | 627 (32.2%) | 0.054 |
MMSE, mean (SD) | 20.8 (±2.8) | 28.4 (±1.5) | <0.0001 |
Min-Max | 10–23 | 24–30 | --- |
Visual acuity, logMAR (OU) | |||
≤0.0 (not impaired) | 33 (73.3%) | 1799 (92.4%) | <0.0001 |
>0.0 (impaired) | 12 (26.7%) | 149 (7.7%) | |
Contrast sensitivity, log sensitivity (OU) | |||
<1.5 (impaired) | 7 (15.2%) | 123 (6.3%) | 0.016 |
≥1.5 (not impaired) | 39 (84.8%) | 1825 (93.7%) | |
Overall visual field sensitivity (dB) | |||
≤22.5 (worse) | 28 (60.9%) | 465 (23.9%) | <0.0001 |
>22.5 (better) | 18 (39.1%) | 1484 (76.1%) | |
Visual processing speed, UFOV test (ms) | |||
<150 (not impaired) | 0 (0.0%) | 1125 (57.8%) | <0.0001 |
150–350 | 16 (34.8%) | 636 (32.7%) | |
>350 (impaired) | 30 (65.2%) | 187 (9.6%) | |
Visual processing speed, Trails B, minutes | |||
<2.47 (not impaired) | 1 (2.2%) | 1240 (63.8%) | <0.0001 |
≥2.47 (impaired) | 45 (97.8%) | 704 (36.2%) | |
Motor-Free Visual Perception Test, # correct | |||
<8 (impaired) | 28 (60.9%) | 270 (13.9%) | <0.0001 |
≥8 (not impaired) | 18 (39.1%) | 1679 (86.2%) | |
Annual mileage, prior year | 7611 (±10,113) | 9579 (±9412) | 0.16 |
No. of MVCs in prior 5 years | |||
0 | 27 (58.7%) | 1434 (73.6%) | 0.024 |
1 or more | 19 (41.3%) | 515 (26.4%) | |
No. of at-fault MVCs in prior 5 years | |||
0 | 33 (71.7%) | 1696 (87.0%) | 0.0026 |
1 or more | 13 (28.3%) | 253 (13.0%) |
Cognitive Impairment Status | No. of Drivers | Any MVC | At-Fault MVC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. of Crashes | Crude | Adjusted 2 | No. of Crashes | Crude | Adjusted 2 | ||||||
RR | RR | 95% CI | p-Value | RR | RR | 95% CI | p-Value | ||||
Impaired 1 | 46 | 11 | 2.33 | 1.26 | 0.65–2.44 | 0.50 | 8 | 3.45 | 1.37 | 0.60–3.11 | 0.46 |
Not impaired (ref) | 1949 | 267 | 1.0 | 1.0 | --- | 131 | 1.0 | 1.0 | --- |
Cognitive Decline | No. of Drivers | Any MVC | At-Fault MVC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. of Crashes | Crude | Adjusted 3 | No. of Crashes | Crude | Adjusted 3 | ||||||
RR | RR | 95% CI | p-Value | RR | RR | 95% CI | p-Value | ||||
Change in MMSE 1 (continuous) | 1937 | 177 | 0.98 | 0.99 | 0.94–1.04 | 0.67 | 86 | 0.93 | 0.94 | 0.87–1.01 | 0.098 |
Cognitive Decline 2 | |||||||||||
Decline (∆ −13.75 to −1.0) | 553 | 50 | 1.08 | 1.03 | 0.73–1.43 | 0.88 | 33 | 1.73 | 1.64 | 1.04–2.57 | 0.032 |
No decline (ref) (∆ −0.75 to +10.0) | 1384 | 126 | 1.0 | 1.0 | --- | 52 | 1.0 | 1.0 | --- |
Characteristics | Decline (n = 553) | No Decline (n = 1384) | p-Value |
---|---|---|---|
Age, years | |||
70–79 | 372 (67.3%) | 1024 (74.0%) | 0.0043 |
80–89 | 166 (30.0%) | 341 (24.6%) | |
90–98 | 15 (2.7%) | 19 (1.4%) | |
Mean, SD | 77.7 (±5.1) | 76.9 (±4.8) | 0.0015 |
Gender | |||
Male | 324 (58.6%) | 762 (55.1%) | 0.16 |
Female | 229 (41.4%) | 622 (44.9%) | |
Race | |||
Non-White | 126 (22.8%) | 220 (15.9%) | 0.0004 |
White | 427 (77.2%) | 1164 (84.1%) | |
Education | |||
Less than high school | 203 (36.8%) | 405 (29.3%) | 0.0004 |
High school or GED | 21 (3.8%) | 27 (2.0%) | |
1–4 years of college | 249 (45.1%) | 736 (53.2%) | |
Postgraduate degree | 79 (14.3%) | 216 (15.6%) | |
Falls in past year | |||
0 | 429 (77.6%) | 1065 (77.0%) | 0.26 |
1 | 71 (12.8%) | 209 (15.1%) | |
≥2 | 53 (9.6%) | 110 (8.0%) | |
Number of medical conditions | |||
0 | 20 (3.6%) | 61 (4.4%) | 0.71 |
1–2 | 178 (32.2%) | 443 (32.0%) | |
3–4 | 232 (42.0%) | 598 (43.2%) | |
5 or more | 123 (22.2%) | 282 (20.4%) | |
Chronic medical conditions | |||
Heart problems | 215 (38.9%) | 553 (40.0%) | 0.66 |
Circulation problems | 91 (16.5%) | 209 (15.1%) | 0.46 |
High blood pressure | 368 (66.6%) | 894 (64.6%) | 0.42 |
Low blood pressure | 24 (4.3%) | 79 (5.7%) | 0.23 |
Neurological problems | 65 (11.8%) | 128 (9.3%) | 0.096 |
Arthritis | 297 (53.7%) | 760 (54.9%) | 0.63 |
Osteoporosis | 69 (12.5%) | 200 (14.5%) | 0.26 |
Cancer | 187 (33.8%) | 420 (30.4%) | 0.14 |
Chronic pulmonary problems | 96 (17.4%) | 222 (16.0%) | 0.48 |
Digestive problems | 160 (28.9%) | 388 (28.0%) | 0.69 |
Urinary problems | 170 (30.7%) | 443 (32.0%) | 0.59 |
Kidney problems | 49 (8.9%) | 122 (8.8%) | 0.97 |
Hearing problems | 166 (30.0%) | 461 (33.3%) | 0.16 |
MMSE, mean (SD) | 28.2 (±1.8) | 28.2 (±1.9) | 0.56 |
Min-Max | 21–30 | 10–30 | |
Visual acuity, logMAR (OU) | |||
≤0.0 (not impaired) | 521 (94.2%) | 1265 (91.5%) | 0.046 |
>0.0 (impaired) | 32 (5.8%) | 117 (8.5%) | |
Contrast sensitivity, log sensitivity (OU) | |||
<1.5 (impaired) | 32 (5.8%) | 91 (6.6%) | 0.52 |
≥1.5 (not impaired) | 521 (94.2%) | 1292 (93.4%) | |
Overall visual field sensitivity (dB) | |||
≤22.5 (worse) | 147 (26.6%) | 321 (23.2%) | 0.12 |
>22.5 (better) | 406 (73.4%) | 1063 (76.8%) | |
Visual processing speed, UFOV test (ms) | |||
<150 (not impaired) | 275 (49.7%) | 829 (59.9%) | <0.0001 |
150–350 | 193 (34.9%) | 433 (31.3%) | |
>350 (impaired) | 85 (15.4%) | 121 (8.8%) | |
Visual processing speed, Trails B, minutes | |||
<2.47 (not impaired) | 295 (53.4%) | 923 (66.9%) | <0.0001 |
≥2.47 (impaired) | 258 (46.7%) | 456 (33.1%) | |
Motor-Free Visual Perception Test, # correct | |||
<8 (impaired) | 105 (19.0%) | 179 (12.9%) | 0.0007 |
≥8 (not impaired) | 448 (81.0%) | 1205 (87.1%) | |
Annual mileage, prior year | 9148 (±8631) | 9653 (±9514) | 0.28 |
No. of MVCs in prior 5 years | |||
0 | 403 (72.9%) | 1018 (73.6%) | 0.76 |
1 or more | 150 (27.1%) | 366 (26.5%) | |
No. of at-fault MVCs in prior 5 years | |||
0 | 481 (87.0%) | 1199 (86.6%) | 0.84 |
1 or more | 72 (13.0%) | 185 (13.4%) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huisingh, C.; Owsley, C.; Wadley, V.G.; Levitan, E.B.; Irvin, M.R.; MacLennan, P.; McGwin Jr., G. General Cognitive Impairment as a Risk Factor for Motor Vehicle Collision Involvement: A Prospective Population-Based Study. Geriatrics 2018, 3, 11. https://doi.org/10.3390/geriatrics3010011
Huisingh C, Owsley C, Wadley VG, Levitan EB, Irvin MR, MacLennan P, McGwin Jr. G. General Cognitive Impairment as a Risk Factor for Motor Vehicle Collision Involvement: A Prospective Population-Based Study. Geriatrics. 2018; 3(1):11. https://doi.org/10.3390/geriatrics3010011
Chicago/Turabian StyleHuisingh, Carrie, Cynthia Owsley, Virginia G. Wadley, Emily B. Levitan, Marguerite R. Irvin, Paul MacLennan, and Gerald McGwin Jr. 2018. "General Cognitive Impairment as a Risk Factor for Motor Vehicle Collision Involvement: A Prospective Population-Based Study" Geriatrics 3, no. 1: 11. https://doi.org/10.3390/geriatrics3010011
APA StyleHuisingh, C., Owsley, C., Wadley, V. G., Levitan, E. B., Irvin, M. R., MacLennan, P., & McGwin Jr., G. (2018). General Cognitive Impairment as a Risk Factor for Motor Vehicle Collision Involvement: A Prospective Population-Based Study. Geriatrics, 3(1), 11. https://doi.org/10.3390/geriatrics3010011