Next Article in Journal
Hexacoordinate Silicon Compounds with a Dianionic Tetradentate (N,N′,N′,N)-Chelating Ligand
Previous Article in Journal
A Reliable Method for the Preparation of Multiporous Alumina Monoliths by Ice-Templating
Article Menu

Export Article

Open AccessArticle
Inorganics 2016, 4(2), 7; doi:10.3390/inorganics4020007

Direct Control of Spin Distribution and Anisotropy in Cu-Dithiolene Complex Anions by Light

1
Graduate School of Science and Engineering, Ehime University, 2-5, Bunkyo-cho, Matsuyama 790-8577, Japan
2
Division of Material Science, Advanced Research Support Center (ADRES), Ehime University, 2-5, Bunkyo-cho, Matsuyama 790-8577, Japan
*
Author to whom correspondence should be addressed.
Academic Editor: Duncan H. Gregory
Received: 15 January 2016 / Revised: 16 March 2016 / Accepted: 21 March 2016 / Published: 30 March 2016
View Full-Text   |   Download PDF [5232 KB, uploaded 30 March 2016]   |  

Abstract

Electrical and magnetic properties are dominated by the (de)localization and the anisotropy in the distribution of unpaired electrons in solids. In molecular materials, these properties have been indirectly controlled through crystal structures using various chemical modifications to affect molecular structures and arrangements. In the molecular crystals, since the energy band structures can be semi-quantitatively known using band calculations and solid state spectra, one can anticipate the (de)localization of unpaired electrons in particular bands/levels, as well as interactions with other electrons. Thus, direct control of anisotropy and localization of unpaired electrons by locating them in selected energy bands/levels would realize more efficient control of electrical and magnetic properties. In this work, it has been found that the unpaired electrons on Cu(II)-complex anions can be optically controlled to behave as anisotropically-delocalized electrons (under dark) or isotropically-localized electrons like free electrons (under UV), the latter of which has hardly been observed in the ground states of Cu(II)-complexes by any chemical modifications. Although the compounds examined in this work did not switch between conductors and magnets, these findings indicate that optical excitation in the [Cu(dmit)2]2− salts should be an effective method to control spin distribution and anisotropy. View Full-Text
Keywords: Cu(II)-dithiolene complex; electron spin resonance; π–d interaction; quantum chemical calculation; molecular crystal Cu(II)-dithiolene complex; electron spin resonance; π–d interaction; quantum chemical calculation; molecular crystal
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Noma, H.; Ohara, K.; Naito, T. Direct Control of Spin Distribution and Anisotropy in Cu-Dithiolene Complex Anions by Light. Inorganics 2016, 4, 7.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Inorganics EISSN 2304-6740 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top