Next Article in Journal
Photodynamic Therapy for Eye Cancer
Previous Article in Journal
The Role of Anti-Thymocyte Globulin or Alemtuzumab-Based Serotherapy in the Prophylaxis and Management of Graft-Versus-Host Disease
Article Menu

Export Article

Open AccessArticle
Biomedicines 2017, 5(4), 68; doi:10.3390/biomedicines5040068

The Modulation of NMDA and AMPA/Kainate Receptors by Tocotrienol-Rich Fraction and Α-Tocopherol in Glutamate-Induced Injury of Primary Astrocytes

1
Department of Biomedical Science, Faculty of Medicine and Health Science, University Putra Malaysia, Jalan Upm, 43400 Serdang, Malaysia
2
Department of Pathology, Faculty of Medicine and Health Science, University Putra Malaysia, Jalan Upm, 43400 Serdang, Malaysia
3
Department of Nutrition and Dietetics, Faculty of Medicine and Health Science, University Putra Malaysia, Jalan Upm, 43400 Serdang, Malaysia
*
Author to whom correspondence should be addressed.
Received: 25 September 2017 / Revised: 15 November 2017 / Accepted: 28 November 2017 / Published: 1 December 2017
View Full-Text   |   Download PDF [4218 KB, uploaded 1 December 2017]   |  

Abstract

Astrocytes are known as structural and supporting cells in the central nervous system (CNS). Glutamate, as a main excitatory amino acid neurotransmitter in the mammalian central nervous system, can be excitotoxic, playing a key role in many chronic neurodegenerative diseases. The aim of the current study was to elucidate the potential of vitamin E in protecting glutamate-injured primary astrocytes. Hence, primary astrocytes were isolated from mixed glial cells of C57BL/6 mice by applying the EasySep® Mouse CD11b Positive Selection Kit, cultured in Dulbecco’s modified Eagle medium (DMEM) and supplemented with special nutrients. The IC20 and IC50 values of glutamate, as well as the cell viability of primary astrocytes, were assessed with 100 ng/mL, 200 ng/mL, and 300 ng/mL of tocotrienol-rich fraction (TRF) and alpha-tocopherol (α-TCP), as determined by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The mitochondrial membrane potential (MMP) detected in primary astrocytes was assessed with the same concentrations of TRF and α-TCP. The expression levels of the ionotropic glutamate receptor genes (Gria2, Grin2A, GRIK1) were independently determined using RT-PCR. The purification rate of astrocytes was measured by a flow-cytometer as circa 79.4%. The IC20 and IC50 values of glutamate were determined as 10 mM and 100 mM, respectively. Exposure to 100 mM of glutamate in primary astrocytes caused the inhibition of cell viability of approximately 64.75% and 61.10% in pre- and post-study, respectively (p < 0.05). Both TRF and α-TCP (at the lowest and highest concentrations, respectively) were able to increase the MMP to 88.46% and 93.31% pre-treatment, and 78.43% and 81.22% post-treatment, respectively. Additionally, the findings showed a similar pattern for the expression level of the ionotropic glutamate receptor genes. Increased extracellular calcium concentrations were also observed, indicating that the presence of vitamin E altered the polarization of astrocytes. In conclusion, α-TCP showed better recovery and prophylactic effects as compared to TRF in the pre-treatment of glutamate-injured primary astrocytes. View Full-Text
Keywords: vitamin E; tocotrienol-rich fraction; alpha tocopherol; glutamate toxicity; primary astrocytes vitamin E; tocotrienol-rich fraction; alpha tocopherol; glutamate toxicity; primary astrocytes
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Abedi, Z.; Khaza’ai, H.; Vidyadaran, S.; Mutalib, M.S.A. The Modulation of NMDA and AMPA/Kainate Receptors by Tocotrienol-Rich Fraction and Α-Tocopherol in Glutamate-Induced Injury of Primary Astrocytes. Biomedicines 2017, 5, 68.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Biomedicines EISSN 2227-9059 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top